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ABSTRACT

We present a fast and e�cient frequency-domain implementation of a
modi�ed parabolic Radon transform (modi�ed PRT) based on a singular
value decomposition (SVD) with applications to multiple removal. The
problem is transformed into a complex linear system involving a single op-
erator after merging the curvature-frequency parameters into a new vari-
able. A complex SVD is applied to this operator and the forward transform
is computed by means of a complex back-substitution that is frequency-
independent. The new transform o�ers a wider curvature range at signal
frequencies than the other PRT implementations allowing the mapping in
the transform domain of low-frequency events with important residual move-
outs (long period multiples). The method is also capable of resolving mul-
tiple energy from primaries when they interfer in a small time interval, a
situation where most frequency-domain methods fail to discriminate the dif-
ferent wave types. Additionally, the method resists better to AVO e�ects in
the data than does the iteratively reweighted least-squares (IRLS) method.
The proposed method was successfully applied to a deep-water seismic line
in the Gulf of Mexico to attenuate water-bottom multiples and subsequent
peg-legs originating from multiple paths in the water column. Combining
the suggested method with the surface-related multiple elimination (SRME)
has lead to the best attenuation results in removing residual multiple energy
in the stack.
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INTRODUCTION

The Parabolic Radon Transform (PRT) is recognized as a popular demulti-
ple tool in seismic processing. The technique relies on the focusing properties
of the primary and multiple re
ection moveouts in the parabolic Radon do-
main. The transform can be applied either to common mid-point (CMP)
data after stretching the time axis to implement the hyperbolic Radon trans-
form (e.g. Yilmaz, 1989; Sacchi and Ulrych, 1995; Trad el al., 2003), or to
seismic data with residual moveouts after the data are corrected for normal
moveout corrections (Hampson, 1986; Foster and Mosher, 1992). Hamp-
son (1986) �rst approximated residual moveouts by parabolic curves and
developed the frequency-domain PRT implemented by solving small-size
complex-valued inverse problems. Data regularization (interpolation), to
�ll-in the missing o�sets, has been investigated as another application of
the transform (Sacchi and Ulrych, 1995; Trad et al., 2002).

Additionally, the smearing problem is common in the standard inversion
of the PRT due to limited o�set coverage (aperture) and spatial sampling.
This directly a�ects the focusing properties of the transform and degrades
the �ltering results. Yilmaz (1989), as well as Foster and Mosher (1992),
used damped least-squares by means of SVD method to obtain what is
known as the regular Radon transform without imposing any constraints in
the solution. Methods for constrained inversion were later developed both
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in the time (Thorson and Claerbout, 1985; Trad, 2001) and frequency do-
mains (Sacchi and Ulrych, 1995; Cary, 1998; Herrmann et al., 2000; Nowak
and Imhof, 2004) to force the sparseness in the Radon domain using diag-
onal weighting matrices instead of the identity matrix in the least-squares
system and yielded encouraging results for a number of applications. While
the Radon transforms are often recast as inverse problems, a convolutional
approach has been also suggested and the transform can be computed by
means of deconvolving the operator that connects to the transform to pro-
vide the data (Zhou and Greenhalgh, 1994).

The moveout discrimination between the primaries and multiples in the
transform domain is based on the focusing properties of both wave types
in separable regions in the PRT domain. When the separation is good, the
transform can be successfully applied to suppress the multiple energy and
conserve the primaries. However, the presence of noise, amplitude varia-
tions with o�sets (AVO), and the failure of the parabolic approximation to
decompose seismic data properly, all a�ect the focusing properties in the
transform and degrade the demultiple process and a�ects the reconstructed
primaries. This results in multiple energy mapping into the primary energy
in the Radon model and vice-versa making any �ltering di�cult. Amplitude
variations with o�set along the primaries are often lost after demultiple in
the PRT domain.
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Sacchi and Ulrych (1995) proposed a nonlinear algorithm with a sparse-
ness constraint based on a minimum entropy along the curvature direction.
The algorithm performs well and leads to a good event focus but fails when
dealing with closely separated events in a small time window and when the
data exhibits signi�cant AVO e�ects.

Alternatively, others imposed the time-domain sparseness constraints
along both curvature and intercept time directions (Cary, 1998; Schonewille
and Aaron, 2007). Weighting matrices are built from the result of the regu-
lar transform, or from the obtained model at the previous iteration when the
algorithm is iterative. Herrmann et al. (2000) solved for aliasing and aper-
ture artifacts using a constrained minimum-norm under-determined problem
with a weighting matrix constructed from the parabolic model obtained at
low frequency components. The bene�ts of the high-resolution time-domain
Radon transform over its frequency-domain counterpart have been reported
on synthetic and real data examples by Cary (1998) and Schonewille and
Aaron (2007). The gain in resolution is due to the fact that the least-
squares Radon model has a higher sparseness in the time-domain than in
the frequency domain, allowing for a better choice for the weighting matrix
for use in the constrained inversion. However, the computing requirements
represent a problem with the time-domain implementations especially on
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high-fold marine gathers.

The frequency-domain formulation allows for time savings. Thus, the
sparse large-size real inverse problem posed in the time domain is replaced
by small-size complex systems to solve for all frequency components within
the signal bandwidth in the data. Nevertheless, constraints for sparse inver-
sion in the time-domain o�er better focus and enhanced multiple removal
than their counterparts implemented in the frequency domain. Examples
showing this were recently reported by Schonewille and Aaron (2007). Sev-
eral algorithms were proposed to solve the problem in the frequency domain
to increase the resolution and enhance the �ltering process.

We present a novel approach for implementing a modi�ed PRT in the
frequency domain that allows for faster inversion compared to the frequency-
curvature domain PRT and better performance at low frequencies by o�er-
ing a wider curvature range. Another advantage is computing e�ciency
where solving several constrained complex inverse problems are replaced by
a similar number of inverse problems involving the same operator, thus al-
lowing a signi�cant gain in computing time for the transform. We include
under frequency-curvature domain PRT all methods implemented in the
frequency-curvature space to compute the transform using standard inver-
sion (least squares) or constrained inversion (using weighting matrcies to
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force the sparseness in the model). The new transform allows for a wider
curvature scan at low frequencies without violating the aliasing conditions
compared to frequency-curvature methods which have the same curvature
range at all processed frequencies. This can be of great utility when dealing
with low frequency events having important residual moveouts which can be
mapped easily in the new transform domain, while these are beyond the cur-
vature range allowed by the aliasing conditions in the frequency-curvature
methods. In addition, the algorithm has a high performance in discrimi-
nating several events having comparable curvature parameters which can-
not be resolved using most frequency-domain implementations of the PRT.
The proposed method is tested against synthetic examples as well as a real
deep-marine data set to attenuate water-bottom multiples and peg-legs with
multiple paths in the water layer.

THE MODIFIED PARABOLIC RADON
TRANSFORM

The inverse PRT is de�ned as a decomposition of seismic data in the curvature-
intercept time domain using a set of curvature values qk; k = 1; Nq appro-
priately chosen to satisfy the requirements of sampling and aliasing. The
PRT is de�ned such that the data are expressed as a sum of constant-
amplitude re
ections with parabolic moveouts. For discrete seismic data
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D(xn; t) recorded at o�set xn and time t, this is de�ned by a sum along
parabolic paths in the q � � domain (Hampson, 1986)

D(xn; t) =
NqX
j=1M(qj ; � = t� qjx2n) n = 1; � � � ; Nx; (1)

where M(q; �) represents the PRT at curvature q and intercept time � , and
Nq being the number of Radon curvatures while Nx denotes the number of
seismic traces.

Using the linearity property of the Fourier transform, equation 1 can be
expressed in the frequency domain as

d(xn; f) =
NqX
j=1m(qj ; f)e2�ifqjx2n ; (2)

where the temporal Fourier transform d(f) for a function D(t) is de�ned as
8>><
>>:

d(f) = R1
�1D(t)e+2�iftdt

D(t) = R1
�1 d(f)e�2�iftdf

: (3)

For discrete data, equation 2 is a complex linear system for a given frequency
f . In matrix notation, this can be written as

d(f) = L(f)m(f); (4)
where d(f) and m(f) are frequency-dependent vectors. The elements of the
matrix L(f) have the form

Lkj(f) = e2�ifqjx2k k = 1; � � � ; Nx; j = 1; � � � ; Nq: (5)
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The above formulation of the PRT requires solving the inverse problem in
4 for each frequency component in the signal bandwidth to compute the
transform because the complex operator L(f) is frequency-dependent lead-
ing to a di�erent matrix for each spectral component. This system can be
solved using a variety of methods (Yilmaz, 1989; Sacchi and Ulrych, 1995;
Cary, 1998; Sacchi and Porsani, 1999; Herrmann et al., 2000).

To remove the frequency-dependence in the transform operator L(f), we
introduce a new variable � = qf with unit m�2. Writing 2 in terms of the
variable � leads to the following system of complex equations

d(xn; f) =
NqX
j=1m(�j ; f)e2�i�jx2n : (6)

This can be written in a more compact form as

d(f) = L(�)m(f); (7)

where the Nx �N� complex matrix L(�) is de�ned as

Lkj(�) = e2�i�jx2k k = 1; � � � ; Nx; j = 1; � � � ; N� = Nq: (8)

Equations 6 or 7 correspond to a modi�ed PRT which can be computed
much faster than the frequency-curvature domain PRT because the inverse
of the matrix L(�) has to be computed only once, given a data acquisition
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geometry [xn; n = 1; � � � ; Nx] and a chosen discretization [�j ; j = 1; � � � ; N�].

The relations between the di�erent PRT transforms are shown in Fig-
ure 1 where FT denotes the Fourier transform. Time-o�set seismic data,
D(x; t), are �rst transformed to the frequency-o�set domain, d(x; f), where
the inverse problem is formulated in the �� f domain to build the modi�ed
PRT m(�; f). Building the PRT panels along the curvature axis, q � f or
q � t domains, requires interpolation from the modi�ed PRT space.

SAMPLING AND ALIASING
For a speci�c seismic data set, the acquisition parameters, [xn; n = 1; � � � ; Nx],
are normally given, and the PRT coordinates, [�j ; j = 1; � � � ; N�], can be
chosen as long as the sampling requirements are ful�lled. Assuming regular
sampling, �x, in the o�set domain and �� in the modi�ed PRT domain,
we must have (Hugonnet and Canadas, 1995; Schonewille and Duijndam,
2001)

�� < 1
x2max � x2min ; (9)

where xmax and xmin are the maximum and minimum o�sets in the data,
respectively.

In equation 6, the phase di�erence between the two last expressions must
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satisfy, for � > 0,

2��x2max � 2�� [xmax ��x]2 < 2�: (10)

This is the case when
� < 12xmax�x: (11)

For � < 0, we get similarly

� > �12xmax�x; (12)

so that
j�j < 12xmax�x: (13)

When the two bounds in inequality 9 and equation 13 are exactly satis�ed
we have, for xmin = 0,

N� = 2 x2max2xmax�x = xmax�x ' Nx: (14)

Thus the matrix L(�) in equation 7 can, in principle, be inverted. It is, how-
ever, numerically ill-conditioned, and a stabilized solution (as shown later)
must be used.

In standard seismic data, the curvature values are normally positive. In
order to reduce the �� range we must partly NMO-correct the data, so there
are re
ections with negative and positive curvatures. Then by observing
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the minimum moveout in the data, �Tmin (which maybe negative), and the
maximum moveout, �Tmax, we can limit the range of ��values to

�min = �Tminfmaxx2max < � < �Tmaxfmaxx2max = �max; (15)
where fmax is the maximum signal frequency in the data. �min and �max
must, of course, satisfy inequality 13 above.

For a high resolution modi�ed PRT, we choose a relatively small sam-
pling interval, ��, satisfying inequality 9 (Herrmann et al., 2000; Schonewille
and Aaron, 2007). The number of values in the PRT domain,

N� = �max � �min�� ; (16)
is then normally larger than the number of seismic channels Nx.

A vertical line in the q � f domain corresponds to an event with a
parabolic moveout parameter (q = constant) in the time-o�set domain. In
the � � f domain this gives a radial line de�ned by the equation � = qf .
Keeping this in mind, all operations in the q � f domain can also be done
in the � � f domain. We also note that from � = qf , the range in q� val-
ues for low frequencies is larger than for high frequencies. This means that
the modi�ed PRT has better curvature coverage at low frequencies than
the frequency-curvature domain PRT. Low frequency events with impor-
tant parabolic moveouts may violate aliasing conditions in the frequency-
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curvature domain PRT, whereas these can be appropriately mapped in the
��f domain thanks to a wide curvature range allowed by the transform (Fig-
ure 2b). The standard and modi�ed PRT's have the same curvature range
only at the maximum signal frequency fmax. For smaller frequencies, the
modi�ed PRT has a wider curvature range providing better coverage in the
curvature domain at most signal frequencies (Figure 2). The red rectangle in
Figure 2a represents the covered curvature zone in the frequency-curvature
domain PRT according to the sampling rules (Turner, 1991; Schonewille and
Duijndam, 2001). The larger zone shows the curvature range covered by the
sampling relations for the modi�ed PRT method expressed by equation 13.
This shows a curvature range that is inversely proportial to the processed
frequency, thus allowing the mapping of low frequency events in the � � f
domain even for important curvature (Figure 2b). The red area in this �g-
ure shows the equivalent �� space highlighted according to the sampling
rules in the standard PRT. In fact, the two red regions in the q� f and the
�� f domains are equivalent and show the limited covergae in the standard
PRT at most signal frequencies. Correspondingly, the ��sampling interval,
��, is inversely proportional to the processed frequency, thus keeping the
same number of ��values for each frequency. This does not a�ect the per-
formance of the modi�ed PRT, but artefacts will appear at low frequencies
when computing the standard transforms, either q � f or q � t domains, is
required. In fact, only a limited ��range is used to recover the correspond-
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ing q � f domain in response to the aliasing conditions. The bene�ts from
this additional curvature range are important when multiples with large
residual moveouts are input for removal. In such a case, the standard PRT
may not map all the events in the frequency-curvature domain, while this
can be handled by the modi�ed PRT. Examples include multiple re
ections
with several paths in the water layer for deep water seismic surveys which
exhibit large residual moveouts compared to primaries 
attened along the
o�set axis. For most cases, the new domain, � � f , allows to perform de-
multiple based on moveout discrimination between primaries and multiples
as well as data interpolation avoiding the need to the abovementioned in-
terpolation (see the 
owchart in Figure 1). This interpolation is required if
separation of parabolic events in a seismic gather requires a dynamic q � f
or q�t rejection zone that cannot be implemented directly in the ��f space.

The least-squares solution

We want to solve the linear problem in equation 7 when the number of
seismic channels, Nx, is larger than the number of values in the ��domain,
N�. Then the problem is overdetermined and the least-squares solution can
be written as

mLS(f) = �
LH(�)L(�)��1 LH(�)d(f); (17)

where H denotes the complex conjugate transpose (the adjoint operator). It
is well known that computing this expression as written may give numerical
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problems due to the large condition number of the matrix LH(�)L(�).

Instead we use the singular value decomposition (SVD) (Bj�orck, 1996)

L(�) = U

2
664
�

0

3
775VH; (18)

whereU and V are complex unitary matrices and � = diag[�1; �2; � � � ; �N� ]
with �1 � �2 � � � � � �N� � 0.

A stable least-squares estimate is given by
mLS(f) = V

h
�y 0

i
UHd(f); (19)

where �y is the pseudo-inverse of � with components

�yk =
8>><
>>:

��1k if �k � �
0 if �k < �

; k = 1; � � � ; N�: (20)

Truncated SVD is used to exclude small singular values while computing the
pseudo-inverse. The numerical rank is often greater than the mathemati-
cal rank of L(�) due to rounding errors during computations. We de�ne
the mathematical rank of a given matrix as the number of rows or columns
linearly independent. Using the decomposition 18, the mathematical rank
denotes the number of non-zero singular values of the matrix. The null sin-
gular values (numerically very small) reside in the null-space domain of the
matrix. Equation 20 assignes a numerical rank to � and hence to L(�) by
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moving the small singular values into the null space of L(�) (Bj�orck, 1996).

Alternatively, one may use a damped least-squares stabilization with

�yk = �k�2k + � ; k = 1; � � � ; N�; (21)

where � now is a damping parameter. This stabilization reduces the condi-
tion number from �1=�N� to a smaller value.

With ~mLS(f) = VHmLS(f) and ~d(f) = UHd(f), equation 19 gives

~mLS;k(f) =
8>><
>>:

�yk~dk(f) k = 1; � � � ; N�
0 k = N� + 1; � � � ; Nx

: (22)

It is seen that the components [~dk; k = N�+1; � � � ; Nx] do not contribute to
the solution.

The minimum-norm solution

In a high-resolution modi�ed PRT, we choose the number of ��values, N�,
to be larger than the number of seismic channels. Then the problem is under-
determined and we choose the minimum-norm solution (Bj�orck, 1996) which
can be written as

mMN(f) = LH(�) �L(�)LH(�)��1 d(f): (23)
16



We use the SVD decomposition for the operator L(�)

L(�) = U[� 0]VH; (24)

where � = diag[�1; �2; � � � ; �Nx ] with �1 � �2 � � � � � �Nx � 0, to obtain a
stable estimate

mMN(f) = V

2
664
�y

0

3
775UHd(f); (25)

where �y is the pseudo-inverse of � as de�ned in equation 20 or, alterna-
tively, in equation 21.

The transformations ~mMN(f) = VHmMN(f) and ~d(f) = UHd(f) gives

~mMN;k(f) =
8>><
>>:

�yk~dk(f) k = 1; � � � ; Nx
0 k = Nx + 1; � � � ; N�

: (26)

We see that the last components of ~mMN are zero, corresponding to the
minimum-norm properties of the solution mMN.

MULTIPLE ATTENUATION AND DATA
REGULARIZATION

We may attenuate multiple re
ections in the � � f domain by partly cor-
recting the seismic data for normal moveout e�ects such that the primary
re
ections appear with less moveout than multiples. The main assumption
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on seismic data input to the transform is that residual moveouts of both
primary and multiple re
ections have parabolic behavior as a function of
o�set (Hampson, 1986). The data are transformed to the � � f domain
using an inverse operator

m̂(f) = Ly(�)d(f); (27)
de�ned in equation 19 or 25. An estimate of the primary re
ections is
obtained by �ltering the data m̂P(f) = F(�; f)m̂(f) where the �lter is

F(�; f) =
8>><
>>:

1 for � � q0f
0 for � > q0f

; (28)

where q0 is a curvature parameter that separates primaries and multiples in
the �� f space. The primary re
ections are then obtained by transforming
back to the x� f domain

dP(f) = L(�)F(�; f)Ly(�)d(f) = G(�; f)d(f): (29)
The matrix G(�; f) = L(�)F(�; f)Ly(�) has dimensions Nx � Nx. It

behaves as a �lter applied to seismic data in the frequency-o�set domain to
remove multiples directly from the data. The multiples can be also estimated
using the following relationship

dM(f) = [INx�Nx �G(�; f)]d(f): (30)
where INx�Nx is the identity matrix.
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For a given frequency, the operator G depends only on the data acquisi-
tion parameters, our choice of parameters in the �� domain, and the choice
of parameters for the pseudo-inverse.

Radon transforms are an attractive domain for data interpolation to �ll
in the missing o�sets or to output a data set with a regular o�set sampling
from an input gather where acquisition conditions didn't allow to achieve
such a purpose (Trad et al., 2002). Regularization is also required when data
are input to some processing programs such as the frequency-wavenumber
�ltering, some migration algorithms, and surface-related multiple elimina-
tion (SRME). This can be done by the modi�ed PRT from

�d(f) = �L(�)m̂(f) = �L(�)Ly(�)d(f); (31)
where �L(�) is de�ned as in equation 8, but the points [xn; n = 1; � � � ; �Nx]
are the desired o�sets after interpolation. The points [�j ; j = 1; � � � ; N�]
are the same in �L(�) as in L(�). �Nx being the number of channels in the
interpolated data set. We may even combine the two algorithms to attenuate
multiples and interpolate data at the same time

�dP(f) = �L(�)F(�; f)Ly(�)d(f): (32)
In all these cases there is, for each frequency, a multiplication by a �xed

matrix which transforms data from the x� f domain to the �� f domain.
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NUMERICAL RESULTS

Synthetic data

1. Constant-amplitude events

To test the e�ciency of the novel approach over popular methods, we inves-
tigated a complex synthetic data example that consists of a large number
of events (20 parabolas) interfering in a narrow time window as illustrated
in Figure 3a. This model contains 12 primaries (Figure 3b) and 8 multiples
(Figure 3c). The primaries are characterized by negative curvature values
whereas the multiples have positive curvatures. This situation can be pro-
duced by applying normal moveout corrections using a velocity law between
the stacking velocities of the primaries and those of the multiples. There
are Nx = 100 seismic channels with o�set spacing �x = 0:02km and a max-
imum o�set xmax = 2:0km. From equations 9 and 13 we obtain the bounds
�� < 0:25km�2 and j�j < 12:5km�2.

The moveout at the maximum o�set used to compute the transform
is in the range �T 2 [�0:3s; 0:3s]. With a maximum signal frequency
fmax = 60Hz, this gives from equation 15 � 2 [�4:5km�2; 4:5km�2] which
is within the maximum value computed above. In Figure 4, we have com-
puted the singular values for the matrix L(�) for di�erent values of N� (or
equivalently ��) with a �xed range of �.
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For N� = 50 (the curve in black), the inverse problem in 7 is overdeter-
mined (Nx > N�) and the condition number is small (�1=�50 = 3:11;). In
this case, the least-squares inverse operator L�1(�) can be computed, but
the transform is not able to map appropriately the primary and multiple
modes for accurate �ltering due to poor sampling along the � -axis. For
N� = Nx = 100 (the curve in grey), the operator L(�) is a square matrix,
but the condition number is large (�1=�100 = 1:34 � 109). In this case,
damping or truncation is required to estimate a pseudo-inverse for the oper-
ator L(�) and compute the transform. The curve for a �ner sampling rate,
N� = 250, is shown in the same �gure in dashed line and corresponds to
an under-determined problem. The general tendency for the three curves
is that the decrease in singular values of L(�) is slow up to about half the
number of seismic traces before a rapid drop to vanishing singular values
[�k ' 0 for k = Nx=2 + 1; � � � ;min(Nx; N�)]. We used the minimum-norm
solution which converts the problem into an inverse problem of dimension
Nx � Nx as provided by equation 25. The SVD of the minimum-norm op-
erator gives an in�nite condition number for N� = 250. To compensate
for this, the pseudo-inverse in equation 20 was used with � = 10�3. The
complex operator L(�) presents the property of rank de�ciency regardless
the size of the operator, the range of curvatures and o�sets. About half of
the singular values of L(�) are mathematically zero (numerically very small)
and do not contribute into the solution as they belong to the null-space of
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L(�). When N� < Nx=2, the operator L(�) has a small condition number
and no truncation is required to compute the transform, but the expected
resolution in the � � f domain is not achieved leading to poor demultiple
and data interpolation results. The parameter � in equation 20 de�nes the
limit between singular values used to compute the new transform and those
belonging to the null space and assumed to be mathematically zero. The
presence of the null space explains a linear dependence between rows and
columns of L(�) making the computation of the transform an ill-conditioned
inversion problem when N� > Nx=2.

The mapping of the whole gather in Figures 3a in the � � f domain is
shown in Figures 3d. Primary and multiple energy are mapped in distinct
areas of the ��f domain. Each event with a parabolic moveout in the time-
o�set domain is transformed along a radial line in the �� f domain passing
through the origin and characterized by the respective event curvature as
the slope value and with a frequency content shaping the wavelet spectrum.
According to this, events with positive curvatures (q > 0) are mapped into
the positive ��space while negative ��space contains events with q < 0.
Events in the time-o�set domain having the same curvature value overlap
within their spectra and their transforms add constructively in the � � f
space.
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The �ltering is applied following a constant q-value to separate the events
in the original gather according to their curvatures as provided by the re-
lation 28. Since primaries have negative curvatures in the example, a mute
zone was established at q = 0 (corresponding also to � = 0) to separate
primaries and multiples, as shown in Figures 3e and 3f, respectively. The
reconstructed gathers after inverse transform are shown in Figures 3g, 3h,
and 3i, they show the events in the original gather with their true curva-
ture and amplitude characteristics. The reconstruction errors for the three
gathers are depicted in Figures 3j, 3k, and 3l. This error is very small for
the whole gather and is mainly due to the use of truncation in estimating
the pseudo-inverse of L(�). All PRT methods su�er such residual errors
after reconstruction due to the ill-conditioning of the inverse problem. The
residual errors from separating primaries and multiples show opposite signs
on the gathers. This occurs mainly along the axis � = 0 thus generating
horizontal low-amplitude artifacts in the �ltered gathers.

2. Events exhibiting AVO e�ects

To examine the relative merits of the novel approach when the data exhibit
AVO e�ects, we included amplitude variations with o�set in the example of
Figure 3. The introduced amplitude functions are second-order functions in
normalized o�set given by

A(y) = a0 + a1y + a2y2; y = jxj
xmax ; (33)
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where y is the normalized o�set. a0; a1, and a2 are real coe�cients that
describe the amplitude functions along the events. The parameter a0 repre-
sents the intercept of the AVO function, while a1 and a2 denote the ampli-
tude gradient and curvature in the o�set domain, respectively.

Figures 5a, 5b, and 5c depict the gathers in Figures 3a, 3b, and 3c af-
ter AVO e�ects were included along the parabolic moveouts on individual
events according to equation 33. The amplitude e�ects on the 12 primary
events (in Figure 5b) are plotted in Figure 6 (curve in black). The amplitude
plots of the events are ordered with respect to increasing zero-o�set time of
the primaries, row by row and column by column in Figure 6. These show
signi�cant amplitude changes with normalized o�set and presenting several
zero-crossings. The event interference between primaries and multiples and
between primaries alone leads to amplitude distorsion on individual events in
the gather. Thus, the amplitudes of the events being interferred add to each
other within the crossing area, hence altering the AVO curve and making
the amplitude inversion inaccurate. The green curves in Figure 6 show the
practical amplitude functions for each event of the primaries that accounts
for the interference with the other primaries. Outside the interference zone,
the theoretical and practical amplitude curves are equal.

The results of applying the modi�ed PRT algorithm to the gather in-
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cluding such AVO e�ects are given in Figure 5 and the recovered amplitude
functions of the primaries after demultiple are also drawn in Figure 6 (curves
in blue). Figure 5d shows the � � f mapping of the gather in Figure 5a.
With a mute zone applied at � = 0, the primary and multiple mappings
in the modi�ed PRT domain are plotted in Figures 5e and 5f, respectively.
The reconstructed gathers, depicted in Figures 5g, 5h, and 5i, preserve the
amplitude variations, showing that this method is an alternative to other
frequency-domain algorithms requiring removal of the AVO e�ects (using
sliding gain functions for instance) before the transform is applied. The
residual errors after reconstruction are very small for the entire gather (Fig-
ure 5j) and show again the low-amplitude horizontal artifacts (Figures 5k
and 5l) similar also to the �rst example (constant-amplitude events).

Schonewille and Zwartjes (2001) proposed a sparseness-constrained frequency-
domain algorithm resisting well to AVO e�ects using the iteratively reweighted
least-squares (IRLS) algorithm combined with a complex version of the
LSQR solver. The approach proposed by Schonewille and Zwartjes (2002)
is explained in the Appendix. Both algorithms give comparable results, but
the modi�ed PRT algorithm has the advantage to be much faster.

The recovered amplitude curves are shown by the red curve in Figure 6
for the 12 events after a single iteration. The recovered amplitudes are very
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accurate at most o�sets. At medium o�sets, 0:2 � y � 0:9, the suggested
approach allows for more accurate conservation of the AVO curve than does
the IRLS method. At near o�sets (y < 0:2), the IRLS method has generally
smaller amplitude errors but the error is larger than the modi�ed PRT for
some primaries (events 6 and 7 for instance). The same observation can be
made at very far o�sets (y > 0:9) where the IRLS method performs slightly
better. The proposed method proves higher accuracy in amplitude recovery
than the IRLS approach at most o�sets. This observation is further con-
�rmed on Figure 7 which depicts the average absolute amplitude error for
the 12 events in Figure 5b. The superiority in performance of our approach
(blue curve) is again demonstrated except at the extreme o�sets in the data.
The black and green curves in Figure 7 show the absolute errors of the AVO
function using 2 and 5 iterations in the IRLS approach, respectively. With
further iterations in the IRLS method, increased accuracy is achieved at
most o�sets. However, a loss of accuracy can also be observed at interme-
diate o�set ranges when comparing results after 2 and 5 iterations. There
is a signi�cant reduction of the errors associated with most o�sets than the
�rst iteration (red curve) but these errors still larger than the modi�ed PRT
errors at most o�sets which has the added advantage to be very fast.

Figure 8 illustrates the method when the data exhibit AVO e�ects and
contain random noise. The results show that the modi�ed PRT method
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stills perform well in such a complicated model. In the � � f domain, the
recognition of the radial lines mapping the events is still possible. The �l-
tered primaries exhibit AVO responses approximating those in the original
model, and the reconstruction error has only residual noise and the artifact
with a zero curvature (at q = 0). As the residual noise resides in the small
singular values of the operator L(�), this is altered after reconstruction ei-
ther by damping or truncation. This explains why the reconstruction error
of the gather in Figure 8a is dominated by noise (Figure 8j).

The Mississipi Canyon seismic line

The modi�ed PRT method was tested on a marine seismic line from the Gulf
of Mexico. The area is characterized by a deep sea-bottom with important
amplitude variations with o�set and water-bottom multiples. The data was
tested by several demultiple programs due to the complexity of the model
(Dragoset, 1999; Guitton and Cambois, 1999; Hadidi et al., 1999; Lamont et
al., 1999; Lokshtanov, 1999; Verschuur and Prein, 1999; Trad et al., 2003).
Figure 9b shows the gather at location CMP 500 and illustrates the strong
interference in the area and the large number of events recorded. Nonhy-
perbolic velocity analysis was performed on the data to generate post-NMO
data to be input for the modi�ed PRT algorithm. Due to the thick water
layer, (1:4km to1:5km), and the thin layers following, moveout velocities are
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very low (mostly ranging from 1500 to 2000 m/s). A velocity spectrum com-
puted using the semblance coe�cient is given in Figure 9d for this gather.
The decrease of stacking velocities after 4s is an obvious indicator of the
presence of water-bottom multiple re
ections and peg-legs originating from
the layers just below the sea-bed. No primary energy can be recognized on
the velocity spectrum at late times (> 4s) due to the presence of multiple
re
ections masking any primaries from a deep salt body in the model. To

atten primary re
ections at far o�sets, we scanned for both the moveout
velocity and the e�ective anellipticity parameters to obtain more accurate
NMO corrections. AVO variations were accounted for in nonhyperbolic ve-
locity analysis using sliding gain functions which allowed the picking of the
re
ected energy in the gathers. Figure 9c shows the gather after applying
nonhyperbolic NMO corrections with parameters derived from automatic
nonhyperbolic velocity analysis (Abbad et al., 2009). The primary energy
corrected with the exact moveout parameters (moveout velocity and e�ec-
tive anellipticity) is well 
attened in the full o�set range, whereas multiple
energy has positive residual moveouts that can be well approximated using
parabolic curves as observed in the lower part of the gather after 4s (Figure
9c). The stretched area around time 2:7s in the NMO-corrected gather is
due to the strong interference in the original gather at far o�sets which can
be observed also at a larger time on the gather before moveout corrections
depicted in Figure 9b.
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The data acquisition parameters are described in detail in Verschuur and
Prein (1999). The o�sets range from 0:1km to 4:874km with a maximum
CMP fold equal to Nx = 90. The data were processed in the time range
[1:6s � 7:0s], limited to the region below the sea bottom where re
ections
are recorded. The modi�ed PRT was applied to the NMO-corrected data
in Figure 9c with a moveout range �T 2 [�0:05s; 0:7s] at the maximum
data o�set. Negative moveout values were included to account for primaries
possibly overcorrected at far o�sets. Using a maximum signal frequency
fmax = 60Hz, this gives � 2 [�0:127km�2; 1:79km�2]. The last value is
just below the limit j�j < 1:89km�2 according to equation 13. Figure 10
shows the distribution of singular values of the matrix L(�) in equation 8 for
di�erent values N� = 45; 90 and 225. For N� = 45 the range of variations
in the singular values is small, but for N� = 90 and N� = 225 the singular
values become very small after the 45 �rst singular values. Again, there is
a sharp drop in the singular values around Nx=2 [(�k ' 0 for k = Nx=2 +
1; � � � ; N�)]. We use N� = 225 and a minimum-norm solution as described
in equation 25 with a cut-o� value � = 5� 10�2 in equation 20 to compute
the modi�ed PRT. This gives the transformed data shown in Figure 9a. The
multiple re
ections are �ltered out with a cut-o� line de�ned by � > q0f
chosen such that

� > �T0fx2max ; (34)
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where �T0 = 0:1s is the cut-o� value for the moveout at the maximum
o�set, xmax. This gives the transformed primaries and multiples shown in
Figures 9e and 9i, respectively.

The data gathers corresponding to these domains are computed through
equation 7 and are illustrated in Figures 9g and 9k. Inverse nonhyperbolic
moveout corrections are applied to reconstruct the original gathers �ltered
into primary (Figure 9f) and multiple (Figure 9j) re
ections. These gath-
ers show that multiples are concentrated in the lower part of the gather
due to multiple paths in the water-column and peg-legs in subsequent thin
layers below the sea-bed. The velocity spectra for the �ltered primaries
and multiples are respectively depicted in Figures 9h and 9l. After demul-
tiple, signi�cant primary energy is recovered after 4s and can be clearly
recognized in the primary gather (Figure 9f) and also in the corresponding
velocity spectrum (Figure 9h).

Figure 11 shows the stack obtained from automatic nonhyperbolic veloc-
ity analysis without any demultiple. The stack illustrates the main features
of the area mainly a deep salt body at around recording time 5s. The lower
part of the stack is dominated by important multiple re
ections after 3:5s
with multiple paths in the water layer and peg-legs in the layers beneath
the sea-bottom. The application of the surface-related multiple elimination
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(SRME) algorithm to this seismic line is illustrated in Figure 12a (from Ver-
schuur and Prein, 1999) with the estimated multiples in Figure 12b. It is
obvious that the SRME method removes multiples after the �rst water-layer
multiple and doesn't attenuate any multiples arriving before like internal
multiples. As this method requires data regularization, the PRT method
was used as part of the SRME method to �ll in the near missing o�sets in
the data which increases the implementation time of the method. The ob-
tained stack after demultiple via the SRME shows improved quality in the
lower part of the section with most multiple energy being removed. How-
ever, residual multiples can be clearly observed between 4 and 5s.

The application of the modi�ed PRT method to this data is illustrated
in Figure 13. The demultiple result in Figure 13a shows e�cient removal of
the associated multiple energy in the data. In the upper part of the section,
the result is better than the SRME method, because the method allowed
the removal of internal multiples coming after the re
ection from the water
bottom (Figure 13b) which enhanced the continuity of the shallow re
ectors
in the section. However, residual multiples still observable around time 4:5s
in the stack. The modi�ed PRT was applied with the parameters derived
for the single CMP gather shown in Figure 9. As suggested by Hadidi et
al. (1999), the modi�ed PRT method was also applied to the data after
the SRME method (as shown in Figure 12). The resulting stack shown in
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Figure 14 is clearly the best in terms of removing multiple re
ections in the
data.

COMPUTATIONAL COST

Both the modi�ed PRT and the constrained PRT based on the IRLS method
work in the x � f domain. This requires 2Nx FFT's of length Nf (= 2k �
Nt; k : integer) for both methods. For multiple attenuation with the mod-
i�ed PRT as given in equation 29 there will be additional Nf0 (number of
discrete frequencies) multiplications with the Nx � Nx complex matrices
G(�; f). For the IRLS approach there will additionally be Nf0 complex in-
versions times the number of iterations of the system given in (A-3) which
increases signi�cantly the computing time since each system involves a dif-
ferent matrix for any processed signal frequency. The computing times of
the two algorithms depend mainly on the number of processed frequencies
and on the CMP fold.
Table 1 summarizes the CPU timing for the two methods according to tests
on a Pentium IV platfrom. The reported times con�rm the considerable gain
in computing time in the modi�ed PRT algorithm. The IRLS method has
larger computing requirements becoming heavy if several iterations are nec-
essary. This is the case when the amplitude functions need to be conserved
in view of a subsequent AVO inversion. For the whole line, the demultiple
process requires about 51min for the modi�ed PRT and almost 6 hours for
a single iteration of IRLS if amplitude conservation is a relevant issue of
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the processing sequence. The timing results show that the modi�ed PRT is
about six to eight times faster than the IRLS method.
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CONCLUSIONS

A fast implementation of a modi�ed PRT has been proposed. The new
transform is linked to the frequency-curvature domain PRT by means of
interpolation and serves as a fast and e�cient tool for multiple removal and
data interpolation. The method shows also a better conservation of AVO
variations along the primaries after demultiple, compared to the popular
frequency-domain implementations of the PRT. The algorithm is very fast
for marine seismic gathers having the same streamer geometry. If the pro-
cessing parameters for the parabolic Radon �ltering are the same for these
gathers, the pseudo-inverse operator for the minimum-norm solution can be
saved in memory and the modi�ed PRT panel is obtained for each CMP
gather by means of complex back-substitution only. This has advantages
over frequency-domain algorithms requiring saving the same operators in
memory for each spectral component to expect similar time saving (Trad et
al., 2003).

The synthetic and real data examples for multiple attenuation showed
that the new method is six to eight times faster than a PRT method based
on the iteratively reweighted least-squares (IRLS) inversion method. The
Mississipi Canyon data example showed that optimum multiple suppression
was obtained by applying the SRME algorithm followed by the modi�ed
PRT method.
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Appendix

AMPLITUDE-COMPENSATED

SPARSENESS-CONSTRAINED TRANSFORM IN THE

FREQUENCY DOMAIN

The cost function for a constrained problem in the least-squares sense can
be expressed as

S(m) =k Lm� d k +�mHW�1
m m; (A-1)

where Wm is a weighting matrix used for preconditioning the model space,
chosen to impose some desired features in the model (sparseness here), and
� is a damping factor. The minimization of the cost function in (A-1) is
translated into solving the complex system of equations2

664
L

�1=2W�1=2
m

3
775m =

2
664
d

0

3
775 : (A-2)

We apply a left-preconditioning to the modelm and a right-preconditioning
to the operator L with the weighting matrix Wm, so the system in (A-2)
can be written as2
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�1=2I

3
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2
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d

0

3
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1=2
m

�m =W
1=2
m m

: (A-3)

The problem in (A-3) is �rst solved for the �m before recovering the true
model m by removing the e�ect of Wm. The weighting matrix Wm is
chosen such that

Wm;k = jmkj(2�p)=2: (A-4)
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where p is the norm of the problem. Wm = I for the least-squares solution
(p = 2). Several choices for designing the weighting matrices Wm for the
model m have been proposed (Sacchi and Ulrych, 1995; Cary, 1998; Her-
rmann et al., 2000; Trad et al., 2001; Nowak and Imhof, 2004; Ji, 2006).
Wm can be de�ned from the computed model at the previous frequency
component. Schonewille and Zwartjes (2001) proposed an iterative process
with a number of outer loops to re�ne the solution. For the �rst iteration,
the weighting matrix we used in the paper examples is given by

Wm;k(fj) = jmk(fj�1)jmaxjm(fj�1)j forfj � fmin; k = 1; � � � ; Nq: (A-5)

No weighting is used for frequencies outside this domain (Wm = I) which
corresponds to the least-squares solution. For an iteration i > 1, Wm is the
following average (Schonewille and Zwartjes, 2001)

W
(i)
m;k =

nfX
j=1 jmk(fj)j(i�1)
nfmaxjmkj(i�1) ; (A-6)

where i denotes the iteration index. The system (A-3) is solved iteratively
by updatingWm at each iteration to impose more sparseness in the solution.
We used the complex LSQR to solve the preconditioned problem in (A-3)
given Wm. Except for the �rst iteration, Wm is frequency-independent
and is obtained by the averaging in (A-6). Other choices can be made for
building the matrixWm in equations (A-5) and (A-6) giving several variants
to this algorithm.

37



REFERENCES

Abbad, B., B. Ursin, and D. Rappin, 2009, Automatic nonhyperbolic veloc-
ity analysis: Geophysics, 74, Issue 2, U1-U12.
Bj�orck, �A, 1996, Numerical methods for least squares problems, Society of
Industrial and Applied Mathematics.
Cary, P.W., 1998, The simplest discrete Radon transform, The 68th Annual
International Meeting, Society of Exploration Geophysicists, Expanded Ab-
stracts, 1999-2002.
Dragoset, B., 1999, A practical approach to surface multiple attenuation:
The Leading Edge, 18, 104-108.
Foster, D.J., and C.C. Mosher, 1992, Suppression of multiple re
ections us-
ing the Radon transform: Geophysics, 57, 386-395.
Guitton A., and G. Cambois, 1999, Multiple elimination using a pattern-
recognition technique: The Leading Edge, 18, 92-98.
Hadidi, M.T., M. Sabih, D.E. Johnston, and C. Calderon-Macias, 1999,
Mobil's results for the 1997 workshop on multiple attenuation: The Leading
Edge, 18, 100-103.
Hampson, D., 1986, Inverse velocity stacking for multiple elimination, Jour-
nal of the Canadian Society of Exploration Geophysicists, 22, 44-55.
Herrmann, P., T. Mojesky, M., Mageson, and P. Hugonnet, 2000, De-aliased,
high-resolution Radon transforms, The 70th Annual International Meeting,
Society of Exploration Geophysicists, Expanded Abstracts, 1953-1956.

38



Hugonnet, P., and G. Canadas, 1995, Aliasing in the parabolic Radon trans-
form: The 65th Annual International Meeting, Society of Exploration Geo-
physicists, Expanded Abstracts, 1366-1369.
Ji, J., 2006, CGG method for robust inversion and its application to velocity-
stack inversion: Geophysics, 71, Issue 4, R59-R67.
Lamont, M.G., B.M. Hartley, and N.F. Uren, 1999, Multiple attenuation
using the NMO and ISR preconditioning transforms: The Leading Edge,
18, 110-114.
Lokshtanov, D., 1999, Multiple suppression by data-consistent deconvolu-
tion: The Leading Edge, 18, 115-119.
Nowak, E.J., and M.G. Imhof, 2004, Di�ractor localization via weighted
Radon transform, The 74th Annual International Meeting, Society of Explo-
ration Geophysicists, Expanded Abstracts, 2108-2111.
Sacchi, M.D., and M.J. Porsani, 1999, Fast high resolution parabolic Radon
transform, The 69th Annual International Meeting, Society of Exploration
Geophysicists, Expanded Abstracts, 1477-1480.
Sacchi, M.D., and T.J. Ulrych, 1995, High resolution velocity gathers and
o�set space reconstruction: Geophysics, 60, 1169-1177.
Schonewille, M.A., and P. A., Aaron, 2007, Applications of time-domain
high-resolution Radon demultiple, The 69th EAGE Conference and Exhibi-
tion.
Schonewille, M.A., and A. J. W. Duijndam, 2001, Parabolic Radon trans-

39



form, sampling and e�ciency: Geophysics, 66, 667-678.
Schonewille, M.A., and P. Zwartjes, 2001, High-resolution transforms and
amplitude preservation: The 72th Annual International Meeting, Society of
Exploration Geophysicists, Expanded Abstracts, 2066-2069.
Thorson, J.R., and J.F. Claerbout, 1985, Velocity-stack and slant-stack
stochastic inversion, Geophysics, 50, 2727-2741.
Trad D., 2001, Computation and implementation of the Radon transforms.
PhD thesis, University of British Columbia, Canada.
Trad, D., T. Ulrych, and M.D. Sacchi, 2002, Accurate interpolation with
high-resolution time-variant Radon transforms: Geophysics, 67, 644-656.
Trad, D., T. Ulrych, and M.D. Sacchi, 2003, Latest views of the sparse
Radon transform: Geophysics, 68, 386-399.
Turner, G., 1990, Aliasing in the tau-p transform and the removal of spa-
tially aliased coherent noise: Geophysics, 55, 1496-1503.
Verschuur, D. J., and R. J. Plein, 1999, Multiple removal results from Delft
University: The Leading Edge, 18, 86-91.
Yilmaz, �O, 1989, Velocity stack processing: Geophysical Prospecting, 37,
357-382.
Zhou, B., and S.A. Greenhalgh, 1994, Linear and parabolic � �p transforms
revisited: Geophysics, 59, 1133-1149.

40



LIST OF FIGURES

Figure 1. Relations between di�erent transforms.
Figure 2. Relation between the curvature range for the standard and mod-
i�ed PRT's.
Figure 3. The modi�ed PRT for a synthetic gather containing 20 noise-free
events (12 primaries and 8 multiples) in a narrow time window without AVO
changes.
Figure 4. Singular values for the operator L(�) for the synthetic data ex-
ample (Nx = 100).
Figure 5. The mod�ed PRT for the gather containing the events in Figure 2
with AVO e�ects included along the events.
Figure 6. Theoretical and inverted AVO curves with respect to the nor-
malized o�set ,y, in the example of Figure 5. The amplitude curves for
the modi�ed PRT (blue), the IRLS method (red), the exact AVO response
(black), and the practical AVO response that accounts for event interference
(green) are all compared for the 12 primary events.
Figure 7. Average absolute error on the AVO inverted curves in the example
of Figure 4 over the 12 primary events using the modi�ed PRT (blue curve)
and the IRLS methods using one (red curve), two (grey curve), and �ve
iterations (black curve).
Figure 8. The modi�ed PRT for the gather in Figure 2 with AVO e�ects
and noise added.

41



Figure 9. The modi�ed PRT for a real data gather from the Gulf of Mexico.
Figure 10. Singular values for the operator L(�) for the Gulf of Mexico data
(Nx = 90).
Figure 11. Raw stack obtained through nonhyperbolic moveout corrections
and stack. No demultiple was applied.
Figure 12. Demultiple results using the surface related multiple elimination
(SRME) algorithm (from Verschuur and Plein, 1999). a) Obtained stack.
b) Estimated multiples.
Figure 13. Demultiple results using the modi�ed PRT algorithm. a) Ob-
tained stack. b) Estimated multiples.
Figure 14. Stack obtained with multiple removal using the SRME method
followed by the modi�ed PRT algorithm. Automatic gain control is applied
after stack.

LIST OF TABLES

Table 1. CPU time for the di�erent algorithms on synthetic and real data
examples.

42



Figure 1. Relations between the di�erent transforms. PRT stands for the
standard parabolic Radon transform, FT for the Fourier transform. t; f

and q are time, frequency and curvature, respectively. � = qf is introduced
to de�ne the modi�ed PRT with a frequency-independent operator. The
frequency-domain PRT and the modi�ed PRT are connected by means of

interpolation in the �� f domain.
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Figure 2. Relation between the curvature range for the standard a) and
the modi�ed PRT's b). The regions in red show the covered curvature- (in

a)) and �� regions (in b)) for the standard PRT.
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Figure 3. The modi�ed PRT for a synthetic gather containing 20 noise-free
events (12 primaries and 8 multiples) in a narrow time window without AVO
changes. a) The total gather; b) The gather for primaries; c) The gather for
multiples. d), e), and f) are the ��f domains mapping the events in a), b),
and c), respectively. g), h), and i) are reconstructed gathers after inverse
transforms. j), k), and l) are reconstruction errors for the respective gathers.
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Figure 4. Singular values �k for the operator L(�) for the synthetic data
example (Nx = 100) as function of the eigenvalue index k.
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Figure 5. The mod�ed PRT for the gather containing the events in
Figure 3 with AVO e�ects included along the events. a) The total gather;
b) The gather for primaries; c) The gather for multiples. d), e), and f) are
the �� f domains mapping the events in a), b), and c), respectively. g),
h), and i) are the reconstructed gathers after inverse transforms. j), k),

and l) denote reconstruction errors for the respective gathers.
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Figure 6. Theoretical and inverted AVO curves with respect to the
normalized o�set ,y, in the example of Figure 5. The amplitude curves for
the modi�ed PRT (blue), the IRLS method (red), the exact AVO response

(black), and the practical AVO response that accounts for event
interference (green) are all compared for the 12 primary events.
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Figure 7. Average absolute error on the AVO inverted curves with respect
to normalized o�set, y, in the example of Figure 4 over the 12 primary
events using the modi�ed PRT (blue curve) and the IRLS methods using

one (red curve), two (black curve), and �ve iterations (green curve).
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Figure 8. The modi�ed PRT for the gather in Figure 3 with AVO e�ects
and noise added. a) The total gather; b) the gather for primaries; c) The
gather for multiples. d), e), and f) are the �� f domains mapping the
events in a), b), and c), respectively. g), h), and i) are the reconstructed
gathers after inverse transforms. j), k), and l) are reconstruction errors for

the respective gathers.
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Figure 9. The modi�ed PRT for a real data gather from the Gulf of
Mexico. a) The �� f domain for the gather in c). b) The input gather. c)
The gather in b) after nonhyperbolic NMO corrections. d) Semblance map
for the gather in b). e) and i) The �� f domain for the primaries and
multiples, respectively. f) and j) Filtered primaries and multiples after
inverse moveout corrections. g) and k) recovered primary and multiple
gathers after inverse transform. h) and l) are velocity spectra for the

separated primaries and multiples.
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Figure 10. Singular values �k for the operator L(�) for the Gulf of Mexico
data (Nx = 90) as function of the eigenvalue index k.
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Figure 11. Raw stack obtained through nonhyperbolic moveout corrections
and stack. No demultiple was applied.
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Figure 12. Demultiple results using the surface related multiple elimination
(SRME) algorithm (from Verschuur and Plein, 1999). a) Obtained stack.

b) Estimated multiples.
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Figure 13. Demultiple results using the modi�ed PRT algorithm. a)
Obtained stack. b) Estimated multiples.
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Figure 14. Stack obtained with multiple removal using the SRME method
followed by the modi�ed PRT algorithm. Automatic gain control is

applied after stack.
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CPU time Modi�ed PRT IRLS (i=1) IRLS (i=2) IRLS (i=3) IRLS (i=5)

Synthetic example 0.517 s 1.870 s 3.113 s 4.293 s 6.516 s

Single CMP 2.865 s 13.525 s 19.199 s 25.089 s 35.637 s

Real data (2180 CMP's) 51 min 03 s 291 min 05 s 582 min 26 s 1153 min 1438 min

Table 1. CPU time for the di�erent algorithms on synthetic and real data examples.

60


