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ABSTRACT

Separation of wavefields into directional components
can be accomplished by an eigenvalue decomposition
of the accompanying system matrix. In conventional
pressure-normalized wavefield decomposition, the re-
sulting directional decomposed differential equations
contain an interaction between directional components,
and depend on the reflectivity function. Usually, the
interaction between directional components is disre-
garded, and by accounting for the reflectivity function,
amplitude information is improved. By directional
wavefield decomposition using flux-normalized eigen-
value decomposition, it is possible to simplify the re-
sulting system differential equations. Disregarding di-
rectional component interaction in the flux-normalized
approach provides wavefield separation independent on
reflectivity function, and amplitude information is pre-
served. As a result, reflectivity images with improved
amplitude information can be beneficial as indicators
of hydrocarbon or in wave-equation migration velocity
analysis.

INTRODUCTION

Accurate wavefield traveltimes and amplitudes can be de-
scribed using two-way wave-equation techniques like finite-
difference or finite-element methods. However, these meth-
ods can often be significantly more computationally ex-
pensive compared to one-way methods. The computa-
tional cost in modelling wavefield extrapolation using full
wave-equation methods can become a limitation for three-
dimensional applications in particular. Ray methods based
upon asymptotic theory provide effective alternatives to
full wave-equation methods; however, their high-frequency
approximations restrict their use in complex subsurface
geometry. One-way wavefield methods based upon a parax-
ial approximation of the wave-equation provide a both

computationally cheap and robust alternative approach
for solving the wave-equation. With wavefield propagators
based on one-way methods, one can increase the speed of
computations by several orders of magnitude compared to
full wavefield methods.

Representation of a wavefield using the one-way wave-
equation permits separation of the wavefield into up- and
downgoing constituents. This separation is not valid for
near-horizontal propagating waves. Schemes for splitting
the wave-equation into up- and downgoing parts and seis-
mic mapping of reflectors are discussed by Claerbout (1971,
1970); however, only the traveltimes are handled correctly.

Several authors have investigated various methods for
amplitude correction to one-way wave-equations. Zhang
et al. (2003, 2005, 2007) addresses true-amplitude imple-
mentation of one-way wave-equations in common-shot mi-
gration by modifying the one-way wave-equation. This is
accomplished by introducing an auxiliary function that
corrects the leading order transport equation for the full
wave-equation. Ray theory applied to the modified one-
way equations yield up- and downgoing eikonal equations
with amplitudes satisfying the transport equation. With
full wave-form solutions substituted with corresponding
ray-theoretical approximations provides true-amplitude in
the sense that the imaging formulas reduce to a Kirchhoff
common-shot inversion expression.

Kiyashchenko et al. (2005) develop improved estimation
of amplitudes using a multi-one-way approach. It is devel-
oped from an iterative solution of the factorized two-way
wave-equation with a right-hand side incorporating the
medium heterogeneities. It allows for both vertical and
horizontal velocity variations and it is demonstrated that
the multi-one-way scheme reduce errors in amplitude es-
timates compared to conventional one-way propagators.

Cao and Wu (2008) reformulate the solution of the one-
way wave-equation in smoothly varying one-dimensional
media based on energy-flux conservations. By introducing
transparent boundary conditions and transparent propa-
gators, their formulation is extended to a general hetero-
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geneous media in the local angle domain utilizing beamlet
methods.

By decomposing the wavefield into up- and downgoing
waves with an eigenvalue decomposition using symmetry
properties of the accompanying system matrix, one can
derive simplified equations for computing the wavefield
propagators. This directional decomposition is consistent
with a flux-normalization of the wavefield (Ursin, 1983).
Further, by neglecting coupling terms between the up-
and downgoing waves, the resulting system matrix can be
used as a starting point to derive paraxial approximations
of the original wave-equation. They can also be used to
derive WKBJ approximations of various orders (Bremmer,
1951; van Stralen et al., 1998).

In this paper, we derive initial conditions and one-way
propagators for flux-normalized wavefield extrapolation in
1D media and show how this provides accurate amplitude
information. We formulate an unbiased estimate of the
reflectivity using the wave-equation angle transform. Fur-
ther, we propose an extension to a general heterogeneous
media by defining a laterally invariant background media
in which the flux-normalization and an approximation to
the transmission loss is performed. We account for the
medium perturbations in the downward propagation us-
ing Fourier finite-difference methods (Ristow and Rühl,
1994).

We apply both conventional pressure-normalized and
the derived flux-normalized wavefield decomposition and
propagation to a field data example from offshore Nor-
way. Using this example, we compare and quantify the
estimated reflectivity differences.

LATERALLY HOMOGENEOUS MEDIUM

We consider acoustic waves travelling in a three-dimensional
medium where the principal direction of propagation is
taken along the x3 axis (or “depth”), and the transverse
axes are (x1, x2). The acoustic medium parameters are
assumed to be functions of depth x3 only. Let c denote
the propagation velocity; v = (v1, v2, v3) the displacement
velocity vector; p the pressure; and ρ the density of the
medium. With no external volume force acting on the
medium, the acoustic wavefield satisfies the constitutive
relation given by (Pierce, 1981) (equation 1-5.3)

−∇p = ρ∂tv, (1)

and the equation of motion given by

1
c2

∂tp + ρ∇ · v = 0, (2)

where ∇ = (∂1, ∂2, ∂3) and ∂t denotes the partial deriva-
tive with respect to time t.

We define the Fourier transform with respect to time t
and the transverse spatial directions (x1, x2) as

P (ω, k1, k2, x3) =∫∫∫ ∞

−∞
p (t, x1, x2, x3) ei(ωt−k1x1−k2x2)dx1dx2dt, (3)

with the inverse transform with respect to circular fre-
quency ω and the transverse wave-numbers (k1, k2) as

p (t, x1, x2, x3) =
1

(2π)3

∫∫∫ ∞

−∞
P (ω, k1, k2, x3) ei(−ωt+k1x1+k2x2)dk1dk2dω.

(4)

Applying the Fourier transform to equations 1 and 2, the
resulting reduced linear acoustic system of equations in a
horizontally homogeneous fluid yield the matrix differen-
tial equation

∂3b = iωAb, (5)

where the system matrix A is given by

A =

[
0 ρ

1
ρ

(
1
c2 − k2

1+k2
2

ω2

)
0

]
, (6)

and the field vector b by

b =
[
P
V3

]
, (7)

where P is the Fourier transformation of p and V3 is the
Fourier transformation of v3 with respect to t, x1 and x2.

The measured field vector b = [P, V3]T can be sepa-
rated into up- and downgoing waves, denoted U and D,
respectively. This separation is accomplished by apply-
ing an inverse eigenvector matrix of A, denoted L−1, on
b. We define the transformed field vector containing the
directional decomposed wavefield by

w =
[
U
D

]
= L−1 b. (8)

Moreover, upon substitution of w, the matrix differential
equation 5 transforms to

∂3w =
(
iωΛ− L−1∂3L

)
w, (9)

where an eigenvalue decomposition of A provides the di-
agonal eigenvalue matrix Λ = L−1AL.

The vertical wave-number k3 is

k3 =


√(

ω
c

)2 − (k2
1 + k2

2), if
√

k2
1 + k2

2 ≤ |ωc |

i
√

k2
1 + k2

2 − (ω
c )2, if

√
k2
1 + k2

2 > |ωc |
. (10)

We consider a plane wave with wavenumber k = (k1, k2, k3)T

and direction m = (sin θ cos φ, sin θ sinφ, cos θ)T where θ
is dip angle and φ is azimuth. We have

k =
mω

c
= ωp, (11)

where p is the slowness vector. In our further develop-
ment, it is convenient to introduce the impedance Z:

Z =
ρω

k3
=

ρ

p3
=

ρc

cos θ
. (12)
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Amplitude-normalized wavefields

In the conventional pressure-normalized wavefield separa-
tion approach, one choose the eigenvector matrix of A as
(Claerbout, 1976; Ursin, 1984, 1987)

L =
[

1 1
− 1

Z
1
Z

]
. (13)

This leads to the inverse eigenvector matrix

L−1 =
1
2

[
1 −Z
1 Z

]
. (14)

With the eigenvector matrix defined in equation 13, the
matrix differential equation 9 becomes

∂3w = iω
[
−p3 0
0 p3

]
w − γ (x3)

[
−1 1
1 −1

]
w, (15)

where
γ (x3) =

1
2
∂3 log Z (x3) (16)

is the reflectivity function. Using equation 12 it can be
expressed as

γ(x3) =
1
2

[
1
ρ

∂ρ

∂x3
+

1
cos2 θ

1
c

∂c

∂x3

]
. (17)

The wavefield decomposition described in equation 15 is
referred to as being pressure-normalized in the sense that
the pressure field equals the sum of the up- and downgoing
wavefield.

We consider a stack of inhomogeneous layers where ρ
and c are continuous functions of x3 within each layer. At
an interface between two layers, the boundary condition
requires that the wave vector b shall be continuous. For
an interface at x3 = x3k

we must have L+w+ = L−w−
where L− = L(x3k−) is evaluated above the interface, and
L+ = L(x3k+) is evaluated beneath the interface (the x3-
axis is pointing vertically downwards). We therefore have

w+ = L−1
+ L−w−. (18)

Equation 13 and 14 give

L−1
+ L− =

1
2

[
1 + Z+

Z−
1− Z+

Z−

1− Z+
Z−

1 + Z+
Z−

]
. (19)

This can be written as (Ursin, 1983, equation 33):

L−1
+ L− =

1
2

[
T−1

u RuT−1
u

RuT−1
u T−1

u

]
, (20)

where Tu and Ru are the transmission and reflection co-
efficients for an upward travelling incident wave at the
interface.

Flux-normalized wavefields

We now derive an alternative directional decomposition
by a flux-normalization of the wavefield. The main ad-
vantage of flux-normalizing the wavefield is that we ob-
tain simpler expression of the corresponding directional

decomposed matrix differential equation, as compared to
the pressure-normalized approach. Disregarding the in-
teraction between directional components yields a matrix
differential equation independent of the reflectivity func-
tion.

In order obtain a flux-normalized system of equations,
we choose the eigenvector matrix of A as (Ursin, 1983;
Wapenaar, 1998)

L̃ =
1√
2

[ √
Z

√
Z

− 1√
Z

1√
Z

]
, (21)

and thus the inverse eigenvector matrix becomes

L̃−1 =
1√
2

[
1√
Z

−
√

Z
1√
Z

√
Z

]
. (22)

This provides a flux-normalized representation of the wave-
field

w̃ = L̃−1 b, (23)

where w̃ = (Ũ , D̃)T , and where Ũ and D̃ denote the flux-
normalized directional components of the wavefield. The
wavefield is referred to as flux-normalized in the sense that
the energy flux in the x3-direction is propagation invariant
(Ursin, 1983; Wapenaar, 1998).

Both the pressure-normalized and the flux-normalized
decomposition break down for near horizontally travelling
waves since the lateral wave-number k3 approaches 0 in
the horizontal direction.

Combining equations 21 and 23 with equation 9 yield
the transformed matrix differential equation

∂3w̃ = iω
[
−p3 0
0 p3

]
w̃ − γ (x3)

[
0 1
1 0

]
w̃. (24)

Comparing the flux-normalized system of equations in
equation 24 with the conventional pressure-normalized sys-
tem of equations in equation 15, we see that in equation 24
only the off-diagonal terms (depending on the reflectivity
function γ(x3)) are present. Further, by neglecting in-
teraction between the flux-normalized directional decom-
posed components, the flux-normalized matrix differential
equation becomes independent of the reflectivity function
γ(x3). Finally, we note that

w̃(ω, k1, k2, x3) =

√
2
Z

w(ω, k1, k2, x3)

=

√
2k3

ρω
w(ω, k1, k2, x3).

(25)

At an interface between two smoothly varying media we
have w̃+ = L̃−1

+ L̃−w̃− with

L̃−1
+ L̃− =

[
T̃−1

u RuT̃−1
u

RuT̃−1
u T̃−1

u

]
(26)

Here,

T̃−1
u =

√
Z−
Z+

T−1
u =

Z+ + Z−

2
√

Z+Z−
=

1
2

{√
Z+

Z−
+

√
Z−
Z+

}
,

(27)
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where Z− denotes the impedance at the bottom of the
previous thin layer and Z+ denotes the impedance at the
top of the next layer.

Zhang et al. (2005) in their equations 27 and 28 use the
scaling w̃ =

√
k3w so they are not using flux-normalized

variables. With their scaling, the transformed matrix dif-
ferential equation will only be of the form of equation 24
for a medium with constant density.

ONE-WAY WAVE-EQUATIONS

We shall obtain one-way equations for the up- and down-
going waves by neglecting the interaction terms in equa-
tions 15 and 20. This gives the zero-order WKBJ approx-
imation (Clayton and Stolt, 1981; Ursin, 1984) obeying
the equations

∂

∂x3

[
U
D

]
=

[
−ik3 + γ 0

0 ik3 + γ

] [
U
D

]
(28)

with interface conditions[
U
D

]
+

= T−1
u

[
U
D

]
−

. (29)

In a region with smoothly varying parameters, the equa-
tion

∂D

∂x3
= (ik3 + γ) D (30)

with D(x0
3) given, has the solution

D(x3) =D(x0
3) exp

[∫ x3

x0
3

(ik3(ζ) + γ(ζ)) dζ

]

=D(x0
3)

√
Z(x3)
Z(x0

3)
exp

[∫ x3

x0
3

(ik3(ζ)) dζ

]
.

(31)

The solution to equations 28 and 29 in the zero-order
WKB approximation becomes

D(x3) = D(x0
3)T (x3) exp

[
i
∫ x3

x0
3

k3(ζ)dζ

]
(32)

and

U(x3) = U(x0
3)T (x3) exp

[
−i

∫ x3

x0
3

k3(ζ)dζ

]
. (33)

The factor

T (x3) =

√
Z(x3)
Z(x0

3)

∏
0<x3k

<x3

T−1
u (x3k

)

√
Z(x3k−)
Z(x3k+)

=

√
Z(x3)
Z(x0

3)

∏
0<x3k

<x3

T̃−1
u (x3k

)

(34)

is due to the interfaces between the inhomogeneous layers.
For the flux-normalized up- and downgoing waves we

obtain from equations 32 to 34 using equation 25:

D̃(x3) = D̃(x30)
∏

0<x3k
<x3

T̃−1
u (x3k

) exp

[∫ x3

x0
3

ik3(ζ)dζ

]
(35)

and

Ũ(x3) = Ũ(x0
3)

∏
0<x3k

<x3

T̃−1
u (x3k

) exp

[
−

∫ x3

x0
3

ik3(ζ)dζ

]
.

(36)
These equations could, of course, also have been obtained
directly by neglecting the interaction terms in equation 24
and 26.

IMAGING CONDITIONS

In order to investigate the amplitude versus angle (AVA)
or amplitude versus slowness (AVP) behavior of imaging
with the different wavefield separation methods, we shall
consider the simple case of a point source at a distance x3

above a plane reflector. See Figure 1.
The initial downgoing wavefield is

D0 = D(ω, k1, k2, x3 = 0) = −2πS(ω)
iωk3

. (37)

The inverse Fourier transform of equation 37 with re-
spect to k1 and k2 is known as the Weyl integral (Aki
and Richards, 1980). S(ω) is the Fourier transform of
the effective source signature. The reflected wavefield is
recorded at the same level as the source, and it is given
by (suppressing the function arguments)

U0 = U(ω, k1, k2, x3 = 0)
= D0 exp [ik3x3]R(p1, p2) exp [ik3x3],

(38)

where R(p1, p2) is the reflection coefficient at depth x3. It
depends only on the horizontal slowness (see Appendix )

p =
√

p2
1 + p2

2. (39)

With amplitude-normalized separation of the up- and
downgoing wavefields, wavefield extrapolation gives, at
depth x3,

D = D0 exp [ik3x3]
U = U0 exp [−ik3x3].

(40)

Imaging, or estimation of the reflection coefficient, is per-
formed by cross-correlation in the wavenumber domain at
depth x3. This gives for amplitude-normalized variables

IA(p1, p2) =
∫

UD∗dω

= R(p1, p2)
∫
|D0|2 dω

= R(p1, p2)
F (ω)
p2
3

,

(41)

where

F (ω) =
∣∣∣∣2πS(ω)

ω

∣∣∣∣2 . (42)
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Figure 1: Simple geometry for imaging conditions.

For flux-normalized variables, w̃ =
√

2p3
ρ w we obtain

IF (p1, p2) =
∫

ŨD̃∗dω

= R(p1, p2)
∫ ∣∣∣D̃0

∣∣∣2 dω

= R(p1, p2)
2F (ω)
ρp3

.

(43)

Sun and Zhang (2009) have proposed a migration scheme
where the initial conditions for the downward continued
wavefield is

D̄0 = −S(ω)
iω

. (44)

This gives the cross-correlation image

IZ(p1, p2) =
∫

UD̄∗
0dω

= R(p1, p2)
∫

D0D̄
∗
0dω

= R(p1, p2)
F (ω)
2πp3

.

(45)

Since p3 = cos(θ)/c it is seen that the first cross-correlation
in equation 41 is divided by cos2(θ), while the two last
in equations 43 and 45 only are divided by cos(θ). It is
customary to estimate the AVA response by multiplying
an AVA response obtained from a cross-correlation im-
age condition with cos(θ). Then only the two last cross-
correlations will give correct AVA behavior. This confirms
what previously has been found by Zhang et al. (2005) and
Sun and Zhang (2009). Multiplying the cross-correlation
AVA response with cos(θ) gives incorrect result for the
amplitude-normalized wavefields, but the one of new ini-
tial data give correct result.

We note that in this simple example, the two first meth-
ods give correct result by computing

R(p1, p2) =
∫

UD∗dω∫
|D0|2 dω

=
∫

ŨD̃∗dω∫ ∣∣∣D̃0

∣∣∣2 dω
.

(46)

In the last method, some care must be used since

R(p1, p2) =
∫

UD̄∗dω∫
D0D̄∗

0dω
. (47)

HETEROGENEOUS MEDIUM

We want to use one-way wave propagators for migration
in a heterogeneous medium. Based on the previous dis-
cussion we choose to use flux-normalized variables. The
downgoing field from a point source is then represented in
the wavenumber-frequency domain by

D̃0(ω, k1, k2, 0) = 2πi
√

2
ρωk3

S(ω). (48)

In marine seismic data we may add the effect of the free
surface (the ghost) on the downgoing wavefield (Amund-
sen and Ursin, 1991):

D̃0(ω, k1, k2, 0) = 2πi
√

2
ρωk3

× (exp [−ik3x
s
3]−R0 exp [ik3x

s
3])S(ω),

(49)

where xs
3 is the source depth, and the reflection coefficient

is theoretically R0 = 1.
If the wavefield is acquired by a conventional streamer

configuration, only pressure is recorded. The primary up-
going wavefield U can then be estimated by a demul-
tiple procedure (Robertsson and Kragh, 2002; Amund-
sen, 2001), where ghost and free-surface multiples are re-
moved from the data. Hence, using equation 25 the flux-
normalized upgoing wavefield can be represented by

Ũ0 =

√
2
Z

U0. (50)

The pressure and the vertical displacement velocity can
be measured in ocean-bottom seismic acquisition. Recent
development (Tenghamn et al., 2008; Landrø and Amund-
sen, 2007) also allows for both these to be measured on a
streamer configuration. Then the flux-normalized upgoing
wavefield is given by

Ũ0 =
1√
2Z

[P − ZV3] . (51)
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The downward continuation of the wavefields is done by
solving the equation

∂w̃
∂x3

=
[
−iĤ1 0

0 iĤ1

]
w̃ (52)

for x3 > 0 with w̃(0) =
[
Ũ0, D̃0

]T

given in equation 49
- 51. Equation 52 is a generalization of equation 24 with
the coupling terms neglected. The operator Ĥ1 is the
square-root operator satisfying (Wapenaar, 1998)

Ĥ1Ĥ1 =
(ω

c

)2

+ρ
∂

∂x1

(
1
ρ

∂

∂x1
·
)

+ρ
∂

∂x2

(
1
ρ

∂

∂x2
·
)

. (53)

By dividing the medium into thin slabs of thickness
∆x3 with negligible variations in the preferred direction
x3 of propagation within each slab, allows us to extend
the propagator to a general inhomogeneous medium with
small lateral medium variations using for example split-
step (Stoffa et al., 1990), Fourier finite difference (Ristow
and Rühl, 1994), or a phase-screen (Wu and Huang, 1992)
approach depending on the size of the medium hetero-
geneities in the lateral direction (Zhang et al., 2009).

At thin-slab boundaries one may apply a correction
term for the transmission loss (see Appendix ):

T̃−1
u =

1
2

[√
Z+

Z−
+

√
Z−
Z+

]
. (54)

Cao and Wu (2006) have proposed a similar correction for
the downward continuation of pressure.

The downward continued wavefields can be used in a
standard way to create an image. One may also apply a
cross-correlation and a local Fourier transform to compute
common-angle gathers (de Bruin et al., 1990; Sava and
Fomel, 2003; de Hoop et al., 2006; Sun and Zhang, 2009).
This is termed the wave-equation angle transform, and a
common-image gather for a single shot is

I(x,p) =
1
2π

∫∫
U

(
x +

h
2

, ω

)
D∗

(
x− h

2
, ω

)
e−iωp·hdhdω,

(55)
where h = (h1, h2, 0) is the horizontal offset coordinate
and p · h = p1h1 + p2h2. In Appendix it is shown that
this approach produces an estimate of the plane-wave re-
flection coefficient multiplied by the energy of the corre-
sponding downgoing plane wave. In order to obtain an
unbiased estimate of the reflection coefficient it is neces-
sary to divide by this factor (which we will refer to as the
source correction term), exactly as in equation 46. This
gives the estimate

RAT (x,p) =
1
2π

∫∫
U

(
x + h

2 , ω
)
D∗ (

x− h
2 , ω

)
e−iωp·hdhdω∫

|D̂(x, ωp, ω)|2dω
.

(56)
It may be necessary to apply a stabilizing procedure as
discussed in Vivas et al. (2009). In order to obtain an
estimate of the reflection coefficient for a range of p-values
it is necessary to average the expression in equation 56
over many shots.

NUMERICAL RESULTS

Throughout our numerical examples, we employ a Fourier
finite-difference approach to account for lateral medium
variations. Further, we consider wave-propagation in a
2D medium.

First we extract amplitude information after migration
using flux-normalized wavefields in a lateral invariant medium.
The input data to migration is modelled over a medium
with density contrasts only; hence, the reflection coeffi-
cients are independent of angle. Next, we compare con-
ventional pressure normalization to the flux-normalized
approach on a field data example where we in a quanti-
tative fashion compare the estimated reflectivity. For the
flux-normalized approach we use equations 35 and 36 com-
bined with equation B-2 for the wave propagation. For the
pressure-normalized approach, we use equations 32 and 33
and set the transmission correction to unity. Equation 56
is used to output AVP gathers on selected locations.

Imaging in a lateral invariant medium

In our first test, we consider a laterally invariant medium
with a constant velocity of 2000 m/s and with density
contrasts in depth at 1, 2, and 3 km as illustrated in Fig-
ure 2. We choose this model since in this particular case
we will have angle independent reflection coefficients. We
create a synthetic split-spread shot-gather over the later-
ally invariant medium using a finite-difference modelling
scheme. In Figure 3 we show the modelled shot, and the
migrated shot is shown in Figure 4.

To extract AVP or AVA information at a reflector posi-
tion, we need information from more than one shot since
each shot gives limited angle information. A schematic
representation of angle information available from one shot
is shown in Figure 5. Using information from the wave-
equation angle-transform, this can further be illustrated
by plotting I(x, p) (in gray-scale) overlaid the source cor-
rection term (in color-scale) at midpoints xm,1 = −0.5
km, xm,2 = 0.0 km, and xm,3 = 0.5 km shown in Figure
6.

By simulating more shots over one midpoint location
xm, we can extract angle information for larger angle cov-
erage as shown schematically in Figure 7. We simulate
100 shots with a shot-distance of 10 m on both sides of
xm, in addition to one shot just above xm. This pro-
duces the angle coverage shown in Figure 8, where we
plot I(x, p) overlaid the corresponding source illumina-
tion for the fixed midpoint location xm. We notice that
the angle coverage for each reflector in depth is different
(as expected).

At each reflector depth, we extract the peak amplitude
of RAT (xm, θ) using equation 56. The result is depicted
in Figure 9. We have plotted the AVA response for the
reflector at 1 km up to 50 degrees (in red), the reflector at
2 km up to 35 degrees (in green) and the reflector at 3 km
up to 25 degrees (in blue). In this example, we expect an
angle-independent reflectivity, and from the result we see
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Figure 2: Densities used in the finite-difference modelling over the lateral invariant model example.
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that the reflectivity is recovered relatively accurately for
a wide range of angles. Due to a limited aperture, edge
effects impact the results, and the largest angles on each
reflector are affected.

Marine field seismic data example

We apply both conventional pressure-normalized and the
derived flux-normalized methods to a field dataset from
the Nordkapp Basin. The basin is located offshore Finn-
mark, in the Norwegian sector of the Barents Sea. It is
an exploration area which exhibits complex geology and
is challenging for seismic imaging. We have extracted a
subset of a 2D survey which covers two salt dome struc-
tures partially. In Figure 10, the velocity model used in
the migration is shown.

The dataset is composed by collecting and combining
streamer data in two directions, providing a split-spread
configuration. Each shot is separated by 25.0 m, and in
our example we have included a total of 775 shots. Each
streamer has 1296 receivers with a hydrophone distance
of 12.5 m and a total offset of about 8100 m on both
sides of the source location. Notice that no demultiple is
applied in the pre-processing step. In Figure 11 we show
one extracted shot which is input to migration.

In the imaging, we have used a source signature com-
parable to a Ricker wavelet with a peak frequency of 17
Hz. We used 3-35 Hz of the frequency content of the
data, and imaged the data down to 10 km. The total
aperture of each shot was 16 km. For both the pressure-
normalized and the flux-normalized wavefield decomposi-
tion, we migrate the dataset with the same downward con-
tinuation scheme and the same imaging condition. That
is, we use a third-order Fourier finite-difference migration
operator and an image condition which estimates the re-
flectivity by accounting for the source illumination. The
flux-normalized migration has an approximation to the
transmission loss correction applied at thin-slab bound-
aries using the minimum velocity at each slab given by
the aperture of each migrated shot. In Figures 12 and 13
the pressure-normalized and the flux-normalized migrated
sections are shown, respectively. By inspecting and com-
paring both sections, we see that we have an apparent
similar amplitude response.

To quantify the difference between the migrated sec-
tions, we the compute difference between the absolute
value of each section. The difference plot is shown in Fig-
ure 14. The red and black colors indicate that the flux-
normalized image provides higher and lower amplitudes
than the pressure-normalized image, respectively. In the
shallower part of the difference image, from the surface
to about 2 km, the pressure-normalized image appears to
be dominating; however, these parts of the sections are
also contaminated by low frequent migration noise. In
the sediment basin between the two salt-domes, that is,
below and around a distance of 6 km, no coherent energy
appears below 2 km. Around approximately a distance of

14 km to 16 km at around depth 8 km, the flux-normalized
images gives a higher amplitude response on some parts of
a few subsurface reflectors. The peak amplitude difference
is around one-tenth of the reflectivity image amplitudes.

Further, we extract a slowness gather from each of the
migration approaches corresponding to lateral position of
14.4 km and these are shown in Figure 15. Figure 15(a)
and Figure 15(b) shows the output from the pressure-
normalized and flux-normalized approach, respectively. The
gathers looks similar. Next, we extract one event at 7.8
km of depth on these gathers, as shown in Figure 16.
For this event we extract the peak amplitudes for each of
the migrated reflectors, and plot these in Figure 17 (top),
where the red curve is the flux-normalized and the blue
curve is the pressure normalized peak amplitudes. Finally,
we take the difference between the normalized peak am-
plitudes (bottom), where the positive and negative values
correspond to higher and lower peak amplitudes when us-
ing flux-normalized variables. The plot shows differences
between the results from the different approaches, and ex-
plains the difference plot in Figure 14.

CONCLUSIONS

By directional decomposing a wavefield using a flux-normalized
eigenvalue decomposition, we have derived initial condi-
tions for pre-stack depth migration of common-shot data.
This decomposition simplifies the system of differential
equations. Further, by neglecting interaction between di-
rectional components, we derive propagators for flux-normalized
wavefields where we formulate a transmission loss com-
pensation approach for flux-normalized wavefield prop-
agation. By using the wave-equation angle transform,
we formulate an unbiased estimate of the reflection co-
efficient. From our one-dimensional numerical example,
we show that a flux-normalized directional decomposi-
tion provides accurate amplitude information in a medium
where the parameters are function of depth only. Fi-
nally, we extend our approach to a laterally varying media.
From a field data example, we observe some differences in
the strength of the estimated reflectivity compared to a
pressure-normalized approach.
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APPENDIX A

THE WAVE-EQUATION ANGLE
TRANSFORMS

In terms of local Fourier transforms, the common-image
gather in equation 55 can be expressed by

I(x,p) =(
1
2π

)5 ∫∫∫∫
Û(x,kr, ω)D̂∗(x,ks, ω)eikr·h/2eiks·h/2e−ip·hdkrdksdω

(A-1)

where kr = (kr
1, k

r
2) and ks = (ks

1, k
s
2). Snell’s law is

Û(x,kr, ω) = R(x,q)D̂∗(x,ks, ω)(2π)2δ(kr −ks). (A-2)

Inserted in equation A-1 this gives

I(x,p) =
(

1
2π

)3 ∫∫∫
R(x,q)|D̂(x,k, ω)|2ei(k−ωp)·hdkdω

(A-3)
where kr = ks = k = ωp. Further simplifications gives

I(x,p) =
1
2π

∫∫
R(x,q)|D̂(x,k, ω)|2δ(k− ωp)dkdω

=R(x,q)
∫
|D̂(x,k, ω)|2dω

(A-4)

The derivations above are only approximate, since finite-
aperture effects have not been taken into consideration.

APPENDIX B

APPROXIMATE TRANSMISSION AND
REFLECTION COEFFICIENTS

The correction factor for downward propagation of the up-
and downgoing wavefields is the transmission coefficient in
equation 27:

T̃−1
u = T−1

u

(
Z−
Z+

)
=

Z+ + Z−

2
√

Z−Z+

. (B-1)

With Z− = Z and Z+ = Z + ∆ this becomes

T̃−1
u =

2Z + ∆
2
√

Z(Z + ∆)

=
2Z + ∆

2Z
√

1 + ∆
Z

≈ 2Z + ∆

2Z
(
1 + ∆

2Z − 1
8

(
∆
Z

)2
)

=
2Z + ∆

2Z + ∆− Z∆
4Z

≈ 1 +
1
8

(
∆
Z

)2

. (B-2)

Using equation 12 for Z we obtain
∆
Z

=
∆(ρc)

ρc
+ tan(θ)∆θ. (B-3)

With

sin(θ) = pc (B-4)
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Figure 15: Slowness-gather at a distance of 14.4 km from the Nordkapp basin field data example. (a) with pressure-
normalized and (b) flux-normalized variables.
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Figure 16: Extracted event at 7.8 km depth from the slowness-gathers in Figure 15 at a distance of 14.4 km for (top)
flux-normalized variables and (bottom) pressure-normalized variables.
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normalized variables (blue line). Difference between normalized peak amplitudes (bottom), where positive and negative
values corresponds to higher and lower peak amplitudes in using flux-normalized variables.
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(p as in horizontal slowness in equation 39)

∆(θ) = tan(θ)
∆c

c
(B-5)

so that

∆
Z

=
∆(ρc)

ρc
+ tan2(θ)

∆c

c
. (B-6)

The reflection coefficient is approximated by

Rd =
Z+ − Z−
Z+ + Z−

≈ ∆
2Z

. (B-7)

The correction term in equation B-2 is second order in
the change in impedance, and it is normally small. How-
ever, in the computation of the one-way wavefields there
appears a product of such terms. This may not be small,
and it should therefore be corrected for.
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