
2.5D EM modeling in TIV conductive media

Torgeir Wiik∗, Bjørn Ursin∗ and Ketil Hokstad∗,†

∗Norwegian University of Science and Technology,

Department for Petroleum Engineering and Applied Geophysics,

S.P. Andersens vei 15A,

NO-7491 Trondheim, Norway

torgeir.wiik@ntnu.no

bjorn.ursin@ntnu.no

†Statoil Research Centre,

Arkitekt Ebbells veg 10,

NO-7053 Ranheim, Norway

kehok@statoilhydro.com

(October 17, 2010)

1

Running head: 2.5D TIV EM Modeling

ABSTRACT

We present an integral equation framework for 2.5D frequency domain EM model-

ing in conductive media, i.e. in media which are assumed invariant in one direction.

Further, we consider media which are transversely isotropic in the vertical direction
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(TIV), thus allowing the horizontal and vertical conductivities to differ. The geo-

metrical information concerning model invariance is utilized in the 3D equations by

applying a Fourier transform in the invariant direction, which reduces the problem

from solving a 3D equation to solving a limited set of 2D equations. This approach

has applications in mCSEM modeling of single line data when there is little medium

variation cross line. The integral equation framework allows for discretization of only

a very limited area of the model given a proper background model, thus leading to

a small system of equations to be solved. The numerical examples show that the

2.5D integral equation framework is able to model mCSEM experiments with TIV

anisotropy, and that anisotropy has a significant effect on mCSEM data. We fur-

ther demonstrate that the presence of TIV anisotropy in the overburden may screen

a resistor and make it harder to detect. TIV anisotropy should thus be taken into

account when modeling mCSEM data to possibly avoid wrongful conclusions.
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INTRODUCTION

Electromagnetics is a classical topic in physics and is well explored, but the use of

electromagnetic signals for hydrocarbon prospecting is a relatively new achievement

(Eidesmo et al., 2002). Due to the fact that a hydrocarbon reservoir typically pos-

sesses a low electric conductivity compared to its surroundings in the subsurface

the reservoir will act as a wave guide for the low-frequency electromagnetic signal

(0.1 − 10Hz) used in marine Controlled Source ElectroMagnetic (mCSEM) surveys.

The signal then leaks towards the surface from the resistive waveguide and is recorded

at the seabed (Løseth, 2007). Due to the low conductivity in the reservoir, the signal

traveling within this resistive area is not as attenuated as that propagating outside.

Thus, at long source/receiver offsets this scattered signal will have a significant im-

pact on the recorded signal (Eidesmo et al., 2002; Kong et al., 2002). Further, these

recorded data also contain effects due to anisotropy in the subsurface (Løseth and

Ursin, 2007). Hence, modeling tools to describe this process is crucial to understand

the propagation of electromagnetic fields in a given model and for interpretation of

mCSEM data.

We will describe how to use integral equation (IE) modeling to compute the fre-

quency domain response from a known model which is invariant in the direction

orthogonal to a single line of sources/receivers (cross line), when it is illuminated by

a known source. As many mCSEM surveys are still collected along lines this could be

useful in many situations. We first briefly present the general IE framework for 3D

anomalies, explored earlier by e.g. Hohmann (1975, 1983); Zhdanov (2002); Abubakar
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and van den Berg (2004), and then demonstrate how to simplify this in the case of

media which are invariant in one direction, so called 2.5D. We formulate the method

for conductive media which are transversely isotropic in the vertical direction (TIV)

and test it on mCSEM scale models. By TIV anisotropy we mean that the currents

induced by the source signal prefer either the horizontal or vertical direction over the

other, possibly due to some specific grain orientation (Negi and Saraf, 1989).

Even though the geometry in this problem is then 2D we may not use 2D equations,

as this would not yield 3D field characteristics. We utilize this information in the 3D

equations by applying a Fourier transform in the invariant direction. This reduces the

problem numerically to solving a limited set of 2D problems, in stead of a 3D problem.

2.5D IE modeling of mCSEM data in TIV media has to the authors’ knowledge not

been published earlier. The IE framework is an effective method in settings where

suitable background Green’s functions can be simulated quickly, as only a smaller

domain inside the background needs to be discretized. Although resulting in a full

system matrix, it is often significantly smaller than those arising from finite difference

or finite element methods.

The 2.5D approach to geophysical EM modeling is not a new idea. A brief mention

of the IE framework is given in (Hohmann, 1987), together with a review of 2D and 3D

modeling. Tehrani and Slob (2008) compared 2.5D and 3D IE modeling in isotropic

models, and Abubakar et al. (2006) considered 2.5D modeling using isotropic models

in cross well configurations. We note that the 2.5D approach has also been explored

previously using other methods, such as finite element methods, see e.g. Unsworth
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et al. (1993); Mitsuhata (2000); Li and Key (2007); Kong et al. (2008), and finite

differences (Stoyer and Greenfield, 1976; Abubakar et al., 2008). Hohmann (1971)

considered scattering from two-dimensional scattering objects in the field from a line

source current using integral equations.

Upon formulating the 2.5D TIV problem we present three numerical examples.

We show that this 2.5D approach is feasible for mCSEM scale problems, and as

the problem is reduced to solving a limited number of 2D problems it should prove

computationally less intensive than a full 3D approach. Thus, when the setting allows

it, it could be favorable with 2.5D IE mCSEM modeling compared to full 3D modeling.

Further, the numerical examples show that TIV anisotropy has a significant effect on

the recorded response which should be taken into account. For instance, we show

that TIV anisotropy in the overburden may screen an anomaly below and make it

harder to detect.

THEORY

Governing equations

It is well known that in the frequency domain the electric field vector e = [ex, ey, ez]

and magnetic field strength vector h = [hx, hy, hz], in a domain without magnetic

anomalies, satisfy (Stratton, 1941)
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∇× e = iωµ0h, (1)

∇× h = σ̃0e + jS, (2)

where i =
√
−1, ω is the angular frequency, µ0 = 4π · 10−7N/A2 is the vacuum

magnetic permeability, jS is the electric source current vector, σ̃0 = σ0− iωε0I and I

is the identity tensor. Here σ0 and ε0 denote the electric conductivity and permittivity

of a given background model, respectively, and we have accepted Ohm’s law (Stratton,

1941)

j = σe. (3)

We further assume a TIV medium, thus considering the conductivity to be a dyad of

the form (Løseth and Ursin, 2007)

σ =


σh 0 0

0 σh 0

0 0 σv

 . (4)

In the mCSEM setting it is customary to neglect the displacement currents in the

subsurface, due to the conductive media and the low frequencies (Nabighian, 1987),

using σ̃0 = σ0.

The electric and magnetic Green’s tensors, GE and GH , are defined as the impulse

response of the background medium due to an electric point source (Green, 1828),
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and are thus given by the equations

∇×GE (x,x0) = iωµ0G
H (x,x0) , (5)

∇×GH (x,x0) = σ̃0G
E (x,x0) + Iδ (x− x0) , (6)

where x = (x, y, z) is a point in space, x0 is the source position and δ is Dirac’s delta

function. The divergence equations in Maxwell’s equations are also imposed.

The solution to equations 1 and 2 in the given background medium is then given

component wise by (Hohmann, 1983)

ei =

∫
R3

GE
ij (x,x′) jSj (x′) dx′, (7)

hi =

∫
R3

GH
ij (x,x′) jSj (x′) dx′, (8)

when written according to Einstein’s rule of summation, i.e. summing over all re-

peated indices. Here i, j ∈ {x, y, z} and GE
ij/G

H
ij denotes component (i, j) of the

corresponding dyad.

Consider now a background model B in which there is an anomaly in electric

conductivity, σ, compared to the background. Assume further that this anomaly is

enclosed in a finite domain D in which there are no electrical sources present. See

Figure 1 for a schematic figure of this. We denote the conductivity inside this domain

as σ = σ (x). According to equations 1 and 2 the electric and magnetic fields inside

D satisfy

7



∇× e = iωµ0h, (9)

∇× h = σ̃0e + (σ − σ0) e. (10)

This implies that jS = σ0,vχe inside D, where

χ =


χh 0 0

0 χh 0

0 0 χv

 =


σh
σ0,v
− σ0,h

σ0,v
0 0

0 σh
σ0,v
− σ0,h

σ0,v
0

0 0 σv
σ0,v
− 1

 , (11)

is a dimensionless contrast. If D is illuminated by a source from the outside, we

may now according to equation 7 write the total electric field at a point inside D as

(Zhdanov, 2002)

ei = einci +

∫
D
GE
ijσ0,vχjjejdx′, (12)

where einc is the incident electric field from the electric source and the integral term

represents the scattered field due to the conductivity difference. Equation 12 is equiva-

lent with the Lippmann-Schwinger equation for the scalar Helmholtz equation (Colton

and Kress, 1992). For simplicity we have omitted to denote the arguments. Assum-

ing that we are able to solve equation 12 for the electric field inside D we may now

express the scattered fields at receiver points outside D as
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fEi =

∫
D
GE
ijσ0,vχjjejdx′, (13)

fHi =

∫
D
GH
ijσ0,vχjjejdx′. (14)

After determining the scattered fields, the total fields are determined by superimpos-

ing them with the incident fields given by equations 7 and 8.

2.5D scattering

We now assume a 3D setting with medium invariance in the cross line direction (y)

to the sailing direction (x), and thus let a single source/receiver line be placed at

y = 0 and along the x-direction. The source polarization is also assumed to be in the

x-direction. The geometry is then invariant in the y-direction, and it is really 2D.

The goal of the 2.5D approach is to reduce the computational complexity of the

modeling problem under the condition of cross line invariance. A true 3D source

is required to obtain correct 3D field characteristics, as opposed to solving the cor-

responding 2D problem. Thus, we seek to utilize the information regarding model

invariance to reduce the complexity, while still obtaining true field characteristics.

Under these assumptions we have

χ = χ (x) = χ (xT ) , (15)

where xT = (x, z), and we define the spatial Fourier transform
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û (ky) =

∫
R
eikyyu (y) dy, (16)

and the appropriate normalized inverse transform. We proceed by applying this

transform to equations 12, 13 and 14. Due to the medium invariance assumption and

the convolutional structure, the y-integration reduces to a spectral multiplication and

we obtain (Hohmann, 1987)

êi = êinci +

∫
xT∈D

ĜE
ijσ0,vχjj êjdx′T , (17)

f̂Ei =

∫
xT∈D

ĜE
ijσ0,vχjj êjdx′T , (18)

f̂Hi =

∫
xT∈D

ĜH
ijσ0,vχjj êjdx′T . (19)

The equations presented so far in this section constitute the 2.5D framework for

calculating the electromagnetic field response at a receiver location in the wavenumber

domain. Our ultimate goal is to calculate the electromagnetic response in the space

domain, so the strategy is to solve the 2.5D equations 17-19 for a proper set of

wavenumbers ky, and then perform an inverse Fourier transform numerically. We

note that the problem is then reduced from a full 3D problem to solving a set of 2D

problems for different ky, as the integrals are now two-dimensional.

To solve equation 17 we use the conjugate gradient method described by van den

Berg (1984), and the inverse Fourier transform is performed using cubic spline in-

terpolation between the selected wavenumbers (Unsworth et al., 1993; Mitsuhata,

2000). To ensure that a sufficient selection of wavenumbers is chosen we combine the
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strategies mentioned in Mitsuhata (2000); Abubakar et al. (2006); Kong et al. (2008),

which give an upper bound and a guideline for the selection.

NUMERICAL EXAMPLES

1D benchmark

To validate our implementation we test our code against a TIV 1D code based on the

theory described by e.g. Ursin (1983); Løseth and Ursin (2007). We choose a layered

background which consists of a 500m water column with conductivity 3.2S/m below a

free surface, and a homogeneous subsurface with conductivity 1S/m. At 1500−1600m

below the free surface we have placed an anisotropic resistor with σh = 0.1S/m and

σh
σv

= 4. The model used is shown in Figure 2, and the domain D was chosen at

−10000m ≤ x ≤ 10000m, 1500m ≤ z ≤ 1600m, which gives 400× 5 = 2000 grid cells

to determine the electric field components in. D was discretized using ∆x = 50m

and ∆z = 20m. The source in Figure 2, placed at x = 0m, z = 450m, is chosen

as an electric point source with unit dipole moment, operating frequency of 0.25Hz,

and is polarized in the x-direction. The receivers are placed at z = 500m, and

−8000m ≤ x ≤ 8000m with an uniform spacing of 500m.

We choose the spectral values ky such that the incident field at the receivers has

an upper bound of 5% relative error when comparing the Fourier transformed 2.5D

fields with the 3D fields, and end up choosing in total 25 spectral values distributed

in the range 0m−1 to 0.05m−1. This number of wavenumbers is in accordance with
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the number of wavenumbers used by e.g. Mitsuhata (2000) and Kong et al. (2008).

The results are shown in Figures 3 - 6, which display the 2.5D results for the inline

and vertical e-field in the same axis as the 1D results, and normalized amplitudes

and phase differences, respectively.

We see from the figures that both amplitude and phase comply with the 1D

results, and the error is stable at a level corresponding to the criterion for choosing

the wavenumbers. We notice that the phase differences in the inline and vertical

components are very similar, although not equal. In Figures 3 and 5 we also clearly

notice the difference between the results with anisotropy present and when the resistor

is isotropic with the horizontal conductivity. This is because the response is governed

by the vertical conductivity (Løseth, 2007).

Comparison with previous results

We have here repeated the exercise performed by Kong et al. (2008), simulating the

response from the model in their Figure 8. We present our equivalents of Figures 9 and

10 in the mentioned paper. The model is a stratified earth with horizontal resistivities

ranging from 1Ohm-m to 3Ohm-m, and anisotropy coefficients σh
σv

from 1 to 3. The

water depth is 300m. Between 0m ≤ x ≤ 10000m, 1430m ≤ z ≤ 1450m a 50Ohm-

m resistor has been inserted, while elsewhise this layer has a 1Ohm-m horizontal

resistivity and anisotropy coefficient σh
σv

= 2. We choose our background model as

their stratified model where the 20m thick layer is removed and replaced by the

properties of the layer beneath. The domain D is chosen as −12000m ≤ x ≤ 12000m,
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1430m ≤ z ≤ 1450m, where the coordinate system is shifted compared to that in

Kong et al. (2008) such that the source is placed at x = 0m. Inside D we specify

the contrast such that it is in compliance with the model from Kong et al. (2008).

The discretization is ∆x = 50m, ∆z = 5m, which amounts to 1920 grid cells only,

compared to the approximately 5000 nodes indicated in Kong et al. (2008).

The equivalents of Figures 9 and 10 from Kong et al. (2008) are shown in Figures

7 and 8. In Figure 7 the 1D results refer to a model where the 20m thick layer has

1Ohm-m horizontal resistivity and σh
σv

= 2, while for Figure 8 the layer has 50Ohm-m

resistivity. We observe the same properties as Kong et al. (2008) with a match for

negative offsets when no target is present in the 1D model, while when the target is

present in the 1D model the results matches approximately at positive offsets. The

match is better for the prior situation.

Anisotropic overburden

To investigate the effect of an anisotropic overburden on the mCSEM response from

a resistor we consider the model shown in Figure 9. The domain D was chosen as

−5000m ≤ x ≤ 15000m, 900m ≤ z ≤ 1550m with mesh-size ∆x = 50m, ∆z = 10m,

such that we model the anisotropy with the 2.5D code. The source is again an electric

dipole with unit dipole moment, operating frequency of 0.25Hz, polarized inline, and

positioned at x = 0m, z = 450m, while the receivers are equidistantly placed on the

seabed with a spacing of 500m from 0− 10000m in the inline direction.
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Figures 10 displays the magnitude and phase of the inline electric field. The effect

of the resistor is clearly present in the signal compared to the correct anisotropic

background. Figure 11 shows the normalized amplitude and phase difference with

respect to the true background and three isotropic background models with the same

structure. The three isotropic models are chosen with the horizontal conductivity, the

vertical conductivity and a conductivity in between (σ = 1S/m) in the anisotropic

layer, respectively. This is done to study the differences in the the normalized fields

and phase differences with respect to the isotropic models compared to the true

anisotropic model.

From Figures 11(a) and 11(b) we observe that the curves with respect to the

isotropic models follow a pattern with decreasing conductivity in the overburden.

However, the curve corresponding to the anisotropic background does not seem to

follow this pattern, indicating that the TIV anisotropy introduces an effect that is

difficult to explain with isotropic models with the same structure. This is in compli-

ance with Ramananjaona et al. (2010), and may lead to wrong interpretations if the

anisotropy is not properly accounted for. Assuming that an anomaly is discovered if

the normalized mangnitude exceeds 1.3, which is the same threshold as used in Roth

and Maaø (2007), we see that when using the anisotropic background the anomaly is

discovered. The following negative anomaly is due to the airwave (Roth and Maaø,

2007). The models using σ = σh and σ = 1S/m yields a higher peak for the nor-

malized response, but in a completely different position. This may lead to wrongful

conclusions when interpreting the signal. The model using σ = σv however, does not
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pass the 1.3 limit. A reservoir may thus be screened by anisotropy in the overburden

if it is not accounted for.

DISCUSSION

The examples demonstrate that TIV anisotropy has a significant effect on mCSEM

data. It should thus be taken into account when modeling such experiments to possi-

bly avoid wrongful interpretations, for example anomaly screening due to anisotropic

formations in the overburden. This method constitutes a possible method for taking

into account TIV anisotropy in the 2.5D setting, and may also be extended to more

general anisotropy configurations.

However, this method’s computational advantage decreases rapidly as the com-

plexity of the background increases, as it relies on rapid construction of the Green’s

tensors and evaluation of the integrals. Thus, with complex background models the

method might not be as efficient compared to other approaches using finite differences

or finite elements. Moreover, the 2.5D approach is, of course, not sufficient in complex

areas where the true 3D nature of the experiment is significant. The method will not

produce results that are comparable to scattering experiments with significant 3D

scattering effects due to cross line variations.
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CONCLUSIONS

We have demonstrated a 2.5D integral equation modeling framework for frequency

domain electromagnetic field propagation in TIV conductive media with conductivity

contrasts. We find that the framework is capable of simulating mCSEM experiments

for hydrocarbon prospecting in TIV models with respect to model size and conductiv-

ity ranges, and that one only has to solve between 20 and 30 2D problems to obtain

reasonable results. This should prove computationally efficient compared to solving

the full 3D problem and is in compliance with earlier work on 2.5D modeling.

The numerical experiments demonstrate that TIV anisotropy has a significant

effect on mCSEM data, while the added computational complexity in modeling is

minimal. Thus, TIV anisotropy should be taken into account in mCSEM model-

ing, and it may be necessary to avoid wrongful conclusions. For instance, the final

numerical example shows that anomalies may be screened by the presence of TIV

anisotropy in the overburden. The presented method constitutes an option for taking

TIV anisotropy into account when modeling mCSEM data under the given assump-

tions, and could be useful both for survey planning, interpretation and inversion.
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Figure 1: Schematic intersection of the model.

Figure 2: Model used in benchmark of 2.5D code against 1D code.

Figure 3: Inline electric field from benchmark of 2.5D code against 1D code. 2.5D

with anisotropy (red cross), 1D with anisotropy (blue circle) and isotropic 1D with

σ = σh (black triangle). (a) Amplitude, (b) Phase.

Figure 4: 2.5D inline electric field compared to true 1D model in benchmark example.

(a) Normalized amplitude, (b) Phase difference.

Figure 5: Vertical electric field from benchmark of 2.5D code against 1D code. 2.5D

with anisotropy (red cross), 1D with anisotropy (blue circle) and isotropic 1D with

σ = σh (black triangle). (a) Amplitude, (b) Phase.

Figure 6: 2.5D vertical electric field compared to true 1D model in benchmark exam-

ple. (a) Normalized amplitude, (b) Phase difference.

Figure 7: 2.5D inline electric field from the model from Figure 8 in Kong et al. (2008)

compared to 1D model without target. 2.5D results (red cross) and 1D results (blue

circle). (a) Amplitude, (b) Phase.

Figure 8: 2.5D inline electric field from the model from Figure 8 in Kong et al. (2008)

compared to 1D model with target. 2.5D results (red cross) and 1D results (blue

circle). (a) Amplitude, (b) Phase.

Figure 9: Model used for test of anisotropy in overburden above resistor.

Figure 10: Inline electric field from test of anisotropy in overburden. Model with

resistor (blue circle), model without resistor (red cross). (a) Amplitude, (b) Phase.

Figure 11: Inline electric field from test of anisotropy in overburden compared to

different models without reservoir. Response compared to true TIV background
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(blue circles), against isotropic model with horizontal conductivity (red cross), against

isotropic model with vertical conductivity (green stars), against isotropic model with

conductivity between σh and σv in the anisotropic layer (black triangle). (a) Normal-

ized amplitude, (b) Phase difference.
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Figure 3: Inline electric field from benchmark of 2.5D code against 1D code. 2.5D

with anisotropy (red cross), 1D with anisotropy (blue circle) and isotropic 1D with

σ = σh (black triangle). (a) Amplitude, (b) Phase.
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Figure 4: 2.5D inline electric field compared to true 1D model in benchmark example.

(a) Normalized amplitude, (b) Phase difference.
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Figure 5: Vertical electric field from benchmark of 2.5D code against 1D code. 2.5D

with anisotropy (red cross), 1D with anisotropy (blue circle) and isotropic 1D with

σ = σh (black triangle). (a) Amplitude, (b) Phase.
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Figure 6: 2.5D vertical electric field compared to true 1D model in benchmark exam-

ple. (a) Normalized amplitude, (b) Phase difference.
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Figure 7: 2.5D inline electric field from the model from Figure 8 in Kong et al. (2008)

compared to 1D model without target. 2.5D results (red cross) and 1D results (blue

circle). (a) Amplitude, (b) Phase.

29



(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
4

10
-14

10
-12

10
-10

10
-8

10
-6

Offset (m)

M
ag

ni
tu

de
 (

V
/m

)

 

 
1D
2.5D

(b)

-1 -0.5 0 0.5 1

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

Offset (m)

P
ha

se

 

 
1D
2.5D

Figure 8: 2.5D inline electric field from the model from Figure 8 in Kong et al. (2008)

compared to 1D model with target. 2.5D results (red cross) and 1D results (blue

circle). (a) Amplitude, (b) Phase.
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Figure 9: Model used for test of anisotropy in overburden above resistor.
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Figure 10: Inline electric field from test of anisotropy in overburden. Model with

resistor (blue circle), model without resistor (red cross). (a) Amplitude, (b) Phase.
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Figure 11: Inline electric field from test of anisotropy in overburden compared to

different models without reservoir. Response compared to true TIV background

(blue circles), against isotropic model with horizontal conductivity (red cross), against

isotropic model with vertical conductivity (green stars), against isotropic model with

conductivity between σh and σv in the anisotropic layer (black triangle). (a) Normal-

ized amplitude, (b) Phase difference.
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