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Abstract
In seismic data processing it is common to use a non-hyperbolic travel-time approximation
assuming weak anisotropy in a transversely isotropic medium with vertical symmetry axis.
It has the correct short-spread (normal) moveout velocity, but higher order terms in offset
squared are only approximations. Using Taylor expansions for the squared vertical slowness
for P- and SV-waves result in new approximations for the phase velocities which may be used
in pre-stack migration algorithms. These approximations are combined with expressions for
travel time and offset as functions of horizontal slowness, giving three new approximations for
travel time squared as functions of offset squared, without the assumption of weak anisotropy.
Numerical examples show that these new approximations all have better accuracy than the
standard weak-anisotropy approximation. Based on the numerical results, we propose a new
travel-time approximation for reflected PP-, SS- and PS-waves to be used in seismic data
processing. They have almost the same functional form as the weak-anisotropy
approximations, with the same normal moveout velocities but with a different heterogeneity
factor which is non-linear in the anisotropy parameters.
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1. Introduction

In anisotropic media the seismic velocities depend on
direction, and the simple hyperbolic formula for the travel
times is no longer valid. For a transversely isotropic (VTI)
medium with a vertical symmetry axis, Tsvankin and Thomsen
(1994) proposed a non-hyperbolic travel-time approximation
by assuming weak anisotropy. This approximation has the
correct normal moveout velocity, and is useful for relatively
short offsets. It is also correct for very long offsets, that
is, for a horizontally travelling wave. Our goal is to derive
approximations for travel time squared as a function of offset
for a reflected, possibly mode-converted wave, which are
valid for short and medium offsets. Such approximations
can more easily be extended to the multi-layer case, and they
can be directly used in seismic time processing (Alkhalifah
1997, Ursin and Hokstad 2003). An alternative approach
is to perform velocity analysis and seismic data processing
in the τ–p domain (Van der Baan and Kendall 2002, 2003,
Sen and Mukherjee 2003).

We derive Taylor series approximations for the squared
vertical slownesses and phase velocities for (quasi-)P- and
(quasi-)SV-waves in a VTI medium without using a weak-
anisotropy approximation. Assuming weak anisotropy our
approximation for the P-wave phase velocity reduces to that
given by Sen and Mukherjee (2003), and by setting the
S-wave velocity equal to zero our approximation is close to
that given by Alkhalifah (1998). Fowler (2003) has compiled
a large number of approximations for the phase velocities,
group velocities and travel times in a homogeneous VTI
medium, many of these are based on perturbations from the
elliptical transverse isotropy (Schoenberg and de Hoop 2000).
Combining the Taylor series approximations for the squared
vertical slownesses and the phase velocities (Stovas and Ursin
2003) with expressions from Ursin and Hokstad (2003)
gives travel time and offset as functions of horizontal
slowness. Further, combining these with a continued fraction
approximation gives three new approximations of travel time
squared as a function of offset. Comparison with the weak-
anisotropy approximation shows that the first and second
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terms in the Taylor series are the same, but the third term
is non-linear with respect to anisotropy parameters and
differs from that used in the weak-anisotropy approximation.
This fact results in different definitions of the heterogeneity
factors (Fomel and Grechka 2001) used in the travel-time
approximations.

Numerical examples show that the new approximations
are more accurate than the weak-anisotropy approximation.
By comparing the numerical performance of these
approximations, we propose a simple travel-time
approximation to be used in seismic data processing. It
is of almost the same functional form as the standard weak-
anisotropy approximation, with the same normal moveout
velocity but with a different heterogeneity factor.

2. P-wave travel-time approximations

We consider P- and SV-waves in a VTI medium characterized
by the Thomsen (1986) parameters which, in terms of elastic
constants, are

vertical P-wave velocity,

α0 =
√

c33

ρ
(1a)

vertical S-wave velocity,

β0 =
√

c44

ρ
(1b)

vertical P-wave to S-wave velocity ratio,

γ0 = α0

β0
=

√
c33

c44
(1c)

P-wave moveout parameter,

δ = (c13 + c44)
2 − (c33 − c44)

2

2c33(c33 − c44)
(1d )

SV-wave moveout parameter,

σ = γ 2
0 (ε − δ) = (c11 − c44)(c33 − c44) − (c13 + c44)

2

2c44(c33 − c44)
.

(1e)

For a P-wave travelling along a ray which makes an angle θP

with the symmetry axis, being the vertical z-axis, the travel
time is

TP = zP

VP cos θP
(2)

and the horizontal distance (offset) is

xP = zP tan θP. (3)

Here zP is the total vertical distance measured along the ray
(up and down for a PP reflection), VP is the P-wave group
velocity and θP is the angle the ray (and group velocity) makes
with the vertical axis. In terms of the phase velocity α and the
phase angle θ , these expressions become (Ursin and Hokstad
2003)

TP = zP

α cos θ
(1 + pα′)

xP = p
zPα

cos θ

(
1 +

α′

pα3

)
,

(4)

where p is horizontal slowness or ray parameter

p = sin θ

α
(5)

and α′ = dα/dp. Following Stovas and Ursin (2003) we can
write

1

α2
= 1

α2
0

− p2Sα. (6)

The function Sα can be expressed in Taylor series

Sα = a0 + a1p
2α2

0 + · · · (7)

with
a0 = 2δ

a1 = 2σ
γ 2

0 + 2δγ 2
0 − 1

γ 2
0

(
γ 2

0 − 1
) = 2(ε − δ)

[
1 +

2γ 2
0 δ

γ 2
0 − 1

]
.

(8)

With equations (5) and (6), equation (4) can be written as

TP = zP

α0

(
1 + 1

2p3α2
0S

′
α

)
√

1 − p2α2
0(1 + Sα)

xP = pzPα0

(
1 + Sα + 1

2pS ′
α

)
√

1 − p2α2
0(1 + Sα)

.

(9)

We now introduce the variables

TP0 = zP

α0

x̄P = xP

α0TP0
= xP

zP

Hα = 1

2
pS ′

α

(10)

and write the travel time and offset squared as

T 2
P = T 2

P0

(
1 + p2α2

0Hα

)2

1 − p2α2
0(1 + Sα)

x̄2
P = p2α2

0
(1 + Sα + Hα)2

1 − p2α2
0(1 + Sα)

.

(11)

From the last equation we can write

p2α2
0 = x̄2

P

(1 + Sα + Hα)2 + x̄2
P(1 + Sα)

. (12)

Substituting this into the first equation gives

T 2
P = T 2

P0

[
1 + x̄2

P
1 + Sα + 2Hα

(1 + Sα + Hα)2

+ x̄4
P

H 2
α

(1 + Sα + Hα)2[(1 + Sα + Hα)2 + x̄2
P(1 + Sα)]

]
.

(13)

By using Taylor expressions for Sα and Hα , and substituting
for p2α2

0 with equation (A6) gives the approximation

T 2
P1 = T 2

P0

[
1 + x̃2

P − 
Px̃
2
P

1 + 4
P + x̃2
P

(1 + 2
P)2 + x̃2
P(1 + 
P)

]
(14)

where the normalized offset now is

x̃2
P = x̄2

P

1 + a0
= x2

P

v2
PT

2
P0

(15)
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with

v2
P = α2

0(1 + a0) = α2
0(1 + 2δ) (16)

being the normal moveout velocity (Thomsen 1986) and


P = GPx̃
2
P

1 + (1 + 4GP)x̃
2
P

. (17)

The other travel-time parameter (similar to the heterogeneity
parameter introduced in Fomel and Grechka (2001)) is

GP = a1

(1 + a0)2
= 2(ε − δ)

(1 + 2δ)2

[
1 +

2γ 2
0 δ

γ 2
0 − 1

]
. (18)

A much simpler travel-time approximation is obtained by
neglecting the H 2

α term in equation (13). This gives, with
Taylor expressions for Sα and Hα and using equation (A6),

T 2
P2 = T 2

P0

[
1 + x̃2

P − GPx̃
4
P

1 + x̃2
P(8 + GP)[

1 + x̃2
P(6 + GP)

]2

]
. (19)

Tsvankin and Thomsen (1994) introduced the weak-anisotropy
approximation

T 2
P3 = T 2

P0

[
1 + x̃2

P − GPx̃
4
P

1 + x̃2
P(1 + GP)

]
, (20)

where GP = 2(ε − δ) in this case. A similar approximation
can be obtained by neglecting higher order terms in
equation (14), resulting in

T 2
P4 = T 2

P0

[
1 + x̃2

P − 
Px̃
2
P

]
= T 2

P0

[
1 + x̃2

P − GPx̃
4
P

1 + x̃2
P(1 + 4GP)

]
,

(21)

where GP is now defined in equation (18).
Dellinger et al (1993) have proposed an anelliptic travel-

time approximation which in our notation can be written as

T 2
P5 = T 2

P0

[
1 + x̃2

P − F(F − 1)x̃4
P

1 + F x̃2
P

]
, (22)

where F is an anellipticity factor. This approximation is
consistent with equation (20) or (21) only in the case F = 1
and GP = 0, corresponding to the standard hyperbolic
approximation.

3. SV-wave travel-time approximations

For an SV-wave the phase velocity can be computed from
(Stovas and Ursin 2003)

1

β2
= 1

β2
0

− p2Sβ, (23)

where Sβ can be expanded in the Taylor series

Sβ = b0 + b1p
2β2

0 + · · · (24)

with

b0 = 2σ

b1 = −2σ
γ 2

0 + 2δγ 2
0 − 1

γ 2
0 − 1

.
(25)

All results and derivations in the previous section can be used
by replacing P with S.

This gives the approximation

T 2
S1 = T 2

S0

[
1 + x̃2

S − 
Sx̃
2
S

1 + 4
S + x̃2
S

(1 + 2
S)2 + x̃2
S(1 + 
S)

]
(26)

with


S = GSx̃
2
S

1 + (1 + 4GS)x̃
2
S

, (27)

and

TS0 = zS

β0
x̃2

S = x2
S

v2
ST

2
S0

GS = b1

(1 + b0)2
= − 2σ

(1 + 2σ)2

[
1 +

2γ 2
0 δ

γ 2
0 − 1

]
(28)

v2
S = β2

0 (1 + 2σ).

The next approximation is directly adapted from equation (19):

T 2
S2 = T 2

S0

[
1 + x̃2

S − GSx̃
4
S

1 + x̃2
S(8 + GS)[

1 + x̃2
S(6 + GS)

]2

]
. (29)

And similarly, the Tsvankin–Thomsen approximation

T 2
S3 = T 2

S0

[
1 + x̃2

S − GSx̃
4
S

1 + x̃2
S(1 + GS)

]
, (30)

where the linearized GS = −2σ . Finally, from equation (21)

T 2
S4 = T 2

S0

[
1 + x̃2

S − GSx̃
4
S

1 + x̃2
S(1 + 4GS)

]
. (31)

4. Converted-wave travel-time approximations

In order to obtain similar travel-time approximations for a
converted wave which has travelled a horizontal distance xP as
a P-wave and a horizontal distance xS as an SV-wave, we first
expand equation (9) in Taylor series. The result is

TP ≈ TP0
[
1 + 1

2p2v2
P + 3

8 (1 + 4GP)p
4v4

P

]
xP ≈ pv2

PTP0
[
1 + 1

2 (1 + 4GP)p
2v2

P

]
.

(32)

Similarly, for the SV-wave

TS ≈ TS0
[
1 + 1

2p2v2
S + 3

8 (1 + 4GS)p
4v4

S

]
xS ≈ pv2

STS0
[
1 + 1

2 (1 + 4GS)p
2v2

S

]
.

(33)

Combining these equations gives

TC = TS + TP ≈ TC0
[
1 + 1

2p2v2
C + 3

8 (1 + 4GC)p4v4
C

]
xC = xS + xP ≈ pv2

CTC0
[
1 + 1

2 (1 + 4GC)p2v2
C

] (34)

with

TC0 = TS0 + TP0

v2
C = v2

STS0 + v2
PTP0

TS0 + TP0

GC = 4
(
v4

STS0GS + v4
PTP0GP

)
(TS0 + TP0) +

(
v2

P − v2
S

)
TS0TP0

4
(
v2

STS0 + v2
PTP0

)2 .

(35)
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Figure 1. P- and SV-wave-anisotropy terms versus horizontal
slowness (model I is at the top, model II is at the bottom).

Consequently, we may use the following expressions for a
converted wave,

T 2
C1 = T 2

C0

[
1 + x̃2

C − 
Cx̃2
C

1 + 4
C + x̃2
C

(1 + 2
C)2 + x̃2
C(1 + 
C)

]
,

(36)

T 2
C2 = T 2

C0

[
1 + x̃2

C − GCx̃4
C

1 + x̃2
C(8 + GC)[

1 + x̃2
C(6 + GC)

]2

]
, (37)

T 2
C3 = T 2

C0

[
1 + x̃2

C − GCx̃4
C

1 + x̃2
C(1 + GC)

]
, (38)

T 2
C4 = T 2

C0

[
1 + x̃2

C − GCx̃4
C

1 + x̃2
C(1 + 4GC)

]
, (39)

with

x̃2
C = x2

C

v2
CT 2

C0


C = GCx̃2
C

1 + (1 + 4GC)x̃2
C

. (40)

Note that GC in the Tsvankin–Thomsen approximation (37)
is approximate and can be computed from equation (34) by
substituting GP = 2(ε − δ) and GS = −2σ .
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Figure 2. The P- and SV-wave phase velocities versus horizontal
slowness (model I is at the top, model II is at the bottom).

5. Discussion and numerical results

By comparing the Taylor series for the P-wave phase velocity
in equations (6)–(8) and the SV-wave phase velocity in
equations (23)–(25) we note that the terms a0 and a1 for the
P-wave phase velocity are small for weak anisotropy while
the terms b0 and b1 for the SV-wave phase velocity contain
terms of the same order multiplied by γ 2

0 = (α0/β0)
2 which

may be large. The Taylor series for Sβ converges much more
slowly than the series for Sα . Both these facts explain why all
approximations for the SV-waves are valid for much smaller
slowness (and offset) ranges than the corresponding P-wave
approximations. All travel-time approximations have the same
normal moveout velocity in the offset-squared term and the
higher order offset terms are multiplied by the heterogeneity
factor G. For the Tsvankin–Thomsen (1994) approximation
G is given by a weak-anisotropy approximation. For SV-
waves, G will be large when σ is negative. This corresponds
to ε − δ < 0 which is impossible for an effective medium
corresponding to a stack of isotropic layers (Berryman 1999).

We compare all approximations for two single-layer
models given in table 1. Model I is a weak-anisotropy
model (δ = 0.05) with ε − δ = 0.05 > 0, GP = 0.09 and
GS = −0.23. Model II has larger anisotropy (δ = 0.15) with
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Figure 3. The deviation in milliseconds from the exact travel time
computed from model I.

Table 1. Parameters for single-layer models I and II.

Parameters Model I Model II

α0 (km s−1) 2.0 2.0
β0 (km s−1) 1.0 1.0
ε 0.1 0.1
δ 0.05 0.15
σ 0.2 −0.2
a0 0.1 0.3
a1 0.11333 −0.14
b0 0.4 −0.4
b1 −0.45333 0.56
TP0 (s) 1.0 1.0
vP (km s−1) 2.098 2.28
GP 0.09366 −0.08284
TS0 (s) 2.0 2.0
vS (km s−1) 1.18322 0.7746
GS −0.23129 1.55556
TC0 (s) 1.5 1.5
vC (km s−1) 1.549 1.46
GC 0.13927 0.17627

ε − δ = −0.05 < 0, GP = −0.08 and GS = 1.56. The results
for the anisotropy terms Sα and Sβ are given in figure 1 for the
P-wave, and for SV-wave phase velocities in figure 2. It is seen
that the approximations for the P-wave phase velocities and
the SV-wave phase velocity in model I are good up to nearly
horizontal propagation. The approximation for the SV-wave
phase velocity in model II is good up to only 30◦ due to the
negative value of ε − δ.

Figures 3 and 4 show the absolute value of the travel-time
errors for the different approximations for models I and II,
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Figure 4. The deviation in milliseconds from the exact travel time
computed from model II.

respectively. The reflector depth is 1 km in both cases. It is
seen that in all cases, the weak-anisotropy approximation has
the poorest performance. With the exception of the SVSV
reflection for model II, T1 and T4 have similar performance
and are better than T2. The behaviour of the SVSV reflection
time approximations for model II is due to the large value of
GS and may not be typical because of ε−δ < 0 for this model.

Based on these numerical results, we propose to use the
following simple travel-time approximation,

T (x)2 = T 2
0 +

x2

v2
NMO

− Gx4

v4
NMO

[
T 2

0 + x2

v2
NMO

(1 + 4G)
] , (41)

where v2
NMO and G are defined in

• equations (16) and (18) for PP reflection,
• equation (28) for SVSV reflection,
• equation (35) for PSV and SVP reflection.

These approximations differ from the standard Tsvankin–
Thomsen (1994) weak-anisotropy approximation only in the
factor 4, and the more accurate definition of the heterogeneity
factor G.

6. Conclusions

We have derived new approximations for the P- and SV-
wave phase velocities and PP, SS and PS (SP) reflection
travel times for a TI media not using the weak-anisotropy
assumption. The comparison with the Tsvankin–Thomsen
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(1994) non-hyperbolic approximation made for single layer
models shows that our approximations are more accurate. For
seismic data processing, we propose to use new simple travel-
time approximations which are almost of the same form as
the Tsvankin–Thomsen approximation, with the same normal
moveout velocities but different heterogeneity factors.

Appendix. Continued fraction approximation

We consider the second-order equation

ax2 + bx + c = 0. (A1)

A continued fraction approximation of the solution is

x = bc

ac − b2
. (A2)

For small values of a this gives the correct solution x = −c/b.
With the approximation in equation (7) and Hα = a1p

2α2
0 ,

equation (11) gives

x̄2
P = p2α2

0

(
1 + a0 + 2a1p

2α2
0

)2

1 − (1 + a0)p2α2
0 − a1p4α4

0

. (A3)

Neglecting a term with a2
1 gives

a1
(
4 + x̃2

P

)
p4α4

0 +
(
1 + x̃2

P

)
(1 + a0)p

2α2
0 − x̃2

P = 0, (A4)

where

x̃2
P = x̄2

P

1 + a0
. (A5)

Using the approximation in (A2) gives

p2α2
0 = x̃2

P

(1 + a0)
[
1 +

(
1 + 4a1

(1+a0)2

)
x̃2

P

] . (A6)

References

Alkhalifah T 1997 Velocity analysis using nonhyperbolic moveout
in transversely isotropic media Geophysics 62 1839–54

Alkhalifah T 1998 Acoustic approximations for processing in
transversely isotropic media Geophysics 63 623–31

Berryman J G 1999 Transversely isotropic elasticity and
poroelasticity arising from thin isotropic layers Theoretical and
Computational Acoustics ’97, Proc. 3rd Int. Conf. on
Theoretical and Computational Acoustics (14–18 July, 1997,
Newark, NJ) ed Y-C Teng, E-C Shang, Y-H Pao, M H Schultz
and A D Pierce (Singapore: World Scientific) pp 457–74

Dellinger J, Muir F and Karrenbach M 1993 Anelliptic
approximations for TI media J. Seism. Exp. 2 23–40

Fomel S and Grechka V 2001 Nonhyperbolic reflection moveout of
P waves. An overview and comparison of reasons Report
CWP-372, Colorado School of Mines

Fowler P J 2003 Practical VTI approximations: a systematic
anatomy J. Appl. Geophys. 54 347–67

Schoenberg M A and de Hoop M V 2000 Approximate dispersion
relations for qP-qSV-waves in transversely isotropic media
Geophysics 65 919–33

Sen M K and Mukherjee A 2003 τ–p analysis in transversely
isotropic media Geophys. J. Int. 154 647–58

Stovas A and Ursin B 2003 Reflection and transmission responses
of layered transversely isotropic visco-elastic media Geophys.
Prospect. 51 447–77

Thomsen L 1986 Weak elastic anisotropy Geophysics 51 1954–66
Tsvankin I and Thomsen L 1994 Nonhyperbolic reflection moveout

in anisotropic media Geophysics 59 1290–304
Ursin B and Hokstad K 2003 Geometrical spreading in a layered

transversely isotropic medium with vertical symmetry axis
Geophysics 68 2082–91

Van der Baan M and Kendall J-M 2002 Estimating anisotropy
parameters and traveltimes in the τ–p domain Geophysics
67 1076–86

Van der Baan M and Kendall J-M 2003 Traveltime and
conversion-point computations and parameter in layered,
anisotropic media by τ–p transform Geophysics 68 210–24

133


