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Abstract 
The basic idea of this paper is to derive approximate equations for vertical slowness for P- and SV-
waves and PP, SS and PS traveltimes in TIV media not using a weak-anisotropy approximation. 
Comparison with the weak anisotropy approximation shows that the first and second terms in Taylor 
series are the same as were used in weak anisotropy approximation, but the third term is non-linear 
with respect to anisotropy parameters and differs from one in weak anisotropy approximation. This 
fact results in different definitions of heterogeneity coefficient in the traveltime approximation. In 
derivation of approximate equation for the traveltimes we use the continued fraction approximation 
which gives more accurate approximations than the standard weak anisotropy approximation. 

P-wave traveltime approximations 
We consider P- and SV-waves in a TIV-medium characterized by the Thomsen (1986) parameters 
which in terms of elastic constants are: vertical P-wave velocity, 0 33cα ρ= ; vertical S-wave 

velocity, 0 44cβ ρ= ; vertical P-wave to S-wave velocity ratio, 0 0 0 33 44c cγ α β= = ; P-wave 
moveout parameter, δ ; SV-wave moveout parameter, σ . 
The P-wave traveltime and offset squared can be written 
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where p  is horizontal slowness, P0T  is vertical traveltime, P P 0 P0x x Tα=  is normalized offset, Sα is 
defined following Stovas and Ursin (2003) 
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and H pS 2α α′= . The function Sα  can be expressed in Taylor series 
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From the last equation in (1) we can write 
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Substituting this into the first equation in (1) gives 
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By using Taylor expressions for Sα  and Hα , and the continued fraction approximation for 2 2
0p α  we 

derive 
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where the normalized offset now is 
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with ( ) ( )2 2 2
P 0 0 0v 1 a 1 2α α δ= + = +  being the moveout velocity (Thomsen, 1986) and  
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The other traveltime parameter (similar to the heterogeneity parameter introduced in Fomel and 
Grechka (2001)) is 
                                                         ( )2
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A much simpler traveltime approximation is obtained by neglecting the 2Hα - term in equation (6) and 
using the continued fraction approximation 
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Tsvankin and Thomsen (1994) introduced the approximation which can be written in the notations 
introduced above 
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with ( )PG 2 ε δ= −  in this case. A similar approximation can be obtained by neglecting higher- order 
terms in equation (7), resulting in 
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where PG  now is defined in equation (10). 

SV-wave traveltime approximations 
For an SV-wave the phase velocity can be computed from (Stovas and Ursin, 2003) 
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where Sβ  can be expanded in the Taylor series 
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All results and derivations in the previous section can be used by replacing P with S. The SV-wave 
moveout parameters are 
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Converted-wave traveltime approximations 
The similar traveltime approximations are obtained for a converted wave which has travelled a 
horizontal distance Px  as a P-wave and a horizontal distance Sx  as an SV-wave. Using the Taylor 
series for P- and SV-wave traveltime and offset we define the following parameters 
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Now we may use the traveltime approximations similar to equation (7), (11)-(13). 
 
Numerical examples 
To compare our approximations for the vertical slowness and traveltimes we consider two single layer 
models with parameters given in Table. The parameter σ  is positive for the model I and is negative 
for the model II. For both single layer models the Taylor series for Sα  (coefficients ja ) converges 

very fast, but the Taylor series for Sβ  (coefficients jb ) converges very slow. In practice it means that 
all weak-anisotropy approximations are more accurate for PP reflection and less accurate for SS and 
PS reflections. The negative value of σ  also creates problems for SS traveltimes: 0.23129= −SG  for 
model I and 1.55556=SG  for model II. In Figure 1 and 2 we show the deviation from the exact 
traveltime for PP reflection (equation (7), (11)-(13)), SS reflection and PS reflection computed for 
model I and model II, respectively. One can see that Tsvankin-Thomsen approximation has serious 
problems for far offset both for model I and model II. With the proposed approximations we can 
improve the accuracy of the traveltime computation for far offset region. 
 
Conclusions 
We have derived new approximations for the P- and SV-wave vertical slowness and PP, SS and PS 
reflection traveltimes for a TIV media not using the weak-anisotropy assumption. The comparison 
with the Tsvankin-Thomsen (1994) nonhyperbolic approximation made for single layer models shows 
that our approximations are more accurate.  
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Parameters Model I Model II 

[ ]0α km s  2.0 2.0 

[ ]0β km s  1.0 1.0 

ε  0.1 0.1 

δ  0.05 0.15 

σ  0.2 -0.2 

[ ]Pv km s  2.098 2.28 

PG  0.09366 -0.08284 

[ ]Sv km s  1.18322 0.7746 

SG  -0.23129 1.55556 

[ ]Cv km s  1.549 1.46 

CG  0.13927 0.17627 
Table. Parameters for single layer model I and II. 
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Figure 1. The deviation in ms from the exact 
traveltime computed from model I. 

Figure 2. The deviation in ms from the exact 
traveltime computed from model II. 


