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SUMMARY
Several phase-shift migration methods depend on the vertical slowness, which in
general can be represented as a nonlinear function of the horizontal slowness. In a VTI
media, the dispersion relations relating the vertical and horizontal slowness, are
complex expressions. Simple and accurate approximations of the exact slowness for
both qP and qSV waves are desired for computationally fast and accurate migration
algorithms. We describe new wide-angle phase slowness approximations for a VTI
media.



Abstract

Several phase-shift migration methods depend on the vertical slowness, which in general can be represented
as a nonlinear function of the horizontal slowness. In a VTI media, the dispersion relations relating the
vertical and horizontal slowness, are complex expressions. Simple and accurate approximations of the
exact slowness for bothqP andqSV waves are desired for computationally fast and accurate migration
algorithms. We describe new wide-angle phase-slowness approximations for a VTI media.

Introduction

If we consider wave propagation in a VTI medium with no cusps and kinks, we obtain two uncoupled
dispersion relations (Aki and Richards, 1980). These relations will in turn provide us with the phase-
slowness expressions for theqP and theqSV waves. The exact expression for the vertical slowness contains
four independent parameters. By observations from Alkhalifah and Tsvankin (1995), only three parameters
influence wave propagation and are of interest in seismic methods. Further, the exact expression of the
vertical slowness is on a complex form, hence a simplified approximation of the vertical slowness with
reduced number of parameters is desired.

Phase-slowness approximations

Let p denote the horizontal slowness. Letα0 andβ0 be theqP and qSV phase velocity in the vertical
direction, and letqα0 andqβ0 be the corresponding slowness, respectively. Then the vertical slowness for
qP andqSV waves in a VTI medium can be expressed by (Stovas and Ursin, 2003)

q2
α,β = −1

2

[
− q2

α0
− q2

β0
+ 2p2 (σ + δ) (1)

±

√(
q2
β0
− q2

α0

)2
− 4

p2

α2
0

(
γ2

0 − 1
)
(σ − δ) + 4p4

(
2
(γ2

0 − 1)
γ2

0

σ + (σ + δ)2
)]

,

whereγ0 denotes the ratio between the verticalqP and qSV phase velocity,ε and δ are the Thomsen
parameters (Thomsen, 1986), andσ = γ2

0 (ε− δ). In our further derivations it will be convenient to use the
parameterη = ε− δ. After algebraic manipulations with equation (1), and a Taylor series expansion of the
square root one obtains
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and higher-order coefficients are given in Stovas and Ursin (2006). A continued fraction approximation
(Stovas and Ursin, 2004) of the Taylor series in equation (2) gives for aqP wave
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wherea0 = 1 + 2δ. This equation can be simplified to
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These approximation introduces a pole forqα andqβ determined by the parameters, so our expression is
valid for values bounded by this pole. The next approximation will give us the exact vertical slowness
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expression in both vertical and horizontal direction of propagation (Schoenberg and de Hoop, 2000; Douma
et al., 2005). It is found by taking advantage of that the vertical slowness is zero whenp2 = 1/v2

h, where
vh is the horizontal phase velocity, for each wavemode. Factoring out the zero in (2) yield the following
representation of the vertical slowness,
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andαh = α0

√
1 + 2ε. The approximations of the sum in equation (7) ensure the interpolation of the approx-

imated and exact slowness both in the horizontal and vertical direction. We denote these approximations the
wide-angle approximations. Similar as for the continued fraction approximation of the equations in (2), a
continued fraction approximation of the wide-angle representation in equation (7) is thus provided by
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This can be further simplified to
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For aqSV wave, equation (2) gives
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This equation can be simplified to
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A wide-angle continued fraction approximation for theqSV -slowness squared is
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with
d0 = c0 − 1 = 2σ, dj = cj − dj−1, (15)

sinceβh = β0. This can be further simplified to
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Numerical results

The approximations are illustrated using two models. In both models we letα0 = 2.0[km/s] andβ0 =
1.0[km/s]. We use two set of parameters to characterize two distinct VTI models. For each model we
compute the approximateqP andqSV slowness curves. In model 1, we assumeε = 0.1 andδ = 0.05. In
model 2, we assumeε = 0.1 andδ = 0.15. The figures show the difference between the exact slowness
(equation (1)) and the continued fraction (equations (5) and (11), denoted CF), the second order wide-
angle (equation (7), denoted WA), and the wide-angle continued fraction (equations (9) and (14), denoted
WACF) approximations as functions of horizontal slownessp. In addition, the simplified continued fraction
(equations (6) and (13), denoted SCF) and the simplified wide-angle continued fraction approximations
(equations (10) and (16), denoted SWACF) are illustrated. The second order Taylor expansion (equation
(2), denoted T) is included for reference. The slowness approximations are constructed to be exact in
the vertical direction, and the wide-angle approximations are in addition exact at the horizontal directions.
These interpolation points are determined by the valuesqα0 andαh for the qP slowness, andqβ0 for the
qSV slowness curve. In the models we have defined, these wide-angel interpolation points arep = 0.46
for theqP andp = 1.00 for theqSV curves. In the second media, the difference between the wide-angle
continued fraction approximation of theqP slowness curve and the exactqP slowness curve is of the order
10−6.

Conclusions

We have derived new simple and accurate wide-angle approximations for theqP andqSV phase-slowness
in a VTI media. For our model parameters, the wide-angle approximations are the most accurate for theqP
andqSV slowness in model 1, and for theqSV slowness in model 2. The wide-angle continued fraction
approximation gives the best fit for theqSV slowness in model 2. For the simplified approximations, the
simplified wide-angle approximations are the most accurate.
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Figure 1: Difference between the exact and approximatedqP andqSV slowness for model 1 and model
2. The curves are the second order Taylor (T), continued fraction (CF), the wide-angle (WA), the wide-
angle continued fraction (WACF), the simplified wide-angle continued fraction (SWACF), and the simplified
continued fraction (SCF) approximation.


