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Abstract

SS-wave traveltimes can be derived from PP- and PS-wave
data with the previously derived “PP + PS=SS” method.
We extend this method as follows: 1) The previous require-
ment that sources and receivers need to be located on a
common acquisition surface is removed, which makes the
method directly applicable to PS-waves recorded on the
ocean bottom and PP-waves recorded at the ocean sur-
face. 2) By using the concept and properties of surface-to-
surface propagator matrices, the second-order traveltimes
of the SS-waves are obtained. In the same way as for the
original “PP+PS=SS” method, the proposed extension is
valid for arbitrary anisotropic media. The propagator ma-
trix and geometric spreading of an SS-wave reflected at a
given point on a target reflector are explicitly obtained from
the propagators of the PP- and PS-waves reflected at the
same point. These additional parameters provided by the
extended ”PP+PS=SS” method can be used for a partial
reconstruction of the SS-wave amplitude as well as for to-
mographic estimation of the elastic velocity model. A full
simulation of the SS-wave, which includes reflection and
transmission coefficients, cannot be directly obtained from
the knowledge of PP- and PS-amplitudes.

Introduction

Present acquisition, e.g., from ocean bottom and land seis-
mics, rely on P-wave source excitations giving rise essen-
tially to PP- and PS-wave field data. In this way, shear-
wave velocities can only be derived from converted PS-
waves included in the data. This fact has been respon-
sible for the high interest in the development of process-
ing/imaging methodologies and tools that are able to ex-
tend the classical ones available for non-converted waves.

In principle, processing of SS-waves, if available in the seis-
mic data, would parallel the one routinely carried out for
PP-waves to provide corresponding S-wave information. In
the near-offset situation, normal moveout (NMO) velocities
or normal-incidence-point (NIP) wave curvatures (Hubral,
1983) can be found from a conventional (time-domain) ve-
locity analysis. NMO-velocities correspond to second-order
derivatives of non-converted wave traveltimes, assumed to

be of type PP or SS. In this way, one avoids dedicated trav-
eltime processing to obtain these velocities. Together with
the traveltimes and slopes, the NIP-wave curvatures can
be applied to tomographic inversion in isotropic models for
the corresponding P- and S-wave velocity fields, [see, e.g.,
Iversen and Gjøystdal (1984) and Duveneck (2004) for the
PP-situation].

Grechka and Tsvankin (2002) introduced a method to
(kinematically) simulate SS-reflections by means of a suit-
able combination of PP- and PS-reflections. More specif-
ically, the method, referred to as “PP+PS=SS” method,
selects identified traveltimes and slopes of PP- and PS-
reflections of the same reflector to produce the correspond-
ing SS-reflection traveltimes and slopes from that reflector.

The obtained SS-reflections can be incorporated to
the original seismic volume as SS-reflection data and
processed in the same way as for PP-waves. The
PP+PS=SS methodology has been used in Foss et al.
(2005) for depth-consistent tomography of PP-and PS-
reflections. For a few key reflectors, the zero-offset PP-
and PS-traveltimes were used to estimate the SS-reflection
times. These were then employed together with the PP
traveltimes for reflector co-depthing.

A natural question is whether the knowledge of the second-
order traveltime derivatives of PP- and PS-waves, as pro-
vided by their ray-propagator matrices, leads to the ray-
propagator matrix of the corresponding SS-wave. In this
paper, we show that the answer to this question is af-
firmative. By using the “algebra” of ray-propagator ma-
trices, as described in, e.g., Červený (2001), an explicit
relationship between the involved PP-, PS- and SS-ray-
propagator matrices is achieved. By examining the rela-
tionships that exist between the coefficients of the second-
order Taylor expansion of traveltime and the submatrix
components of the PP-, PS- and SS- ray-propagator ma-
trices, we see that the new results provide the second-
order derivatives of SS-traveltime thus extending the coun-
terpart zero- and first-order derivatives provided by the
original “PP+PS=SS” method of Grechka and Tsvankin
(2002). Moreover, the simple assumption that sources and
receivers are located on a common planar acquisition sur-
face is removed, which makes the method directly applica-
ble to PS-waves recorded on the ocean bottom and PP-
waves recorded at the ocean surface.

A main application of the proposed extension of the
“PP+PS=SS” method is that it opens the way for tomo-
graphic reconstruction of the elastic velocity model using,
besides first-order derivatives (slopes), also second-order
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Figure 1: Central and paraxial rays from anterior,
Σ

s, to posterior, Σ
r, surfaces. Points x

s0 and x
s

are central and paraxial sources specified in orthog-
onal curvilinear coordinates on the anterior surface.
Points x

r0 and x
r are corresponding central and

paraxial receivers specified on the posterior surface.
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Figure 2: One PP- and two PS-reflections with a com-
mon reflection point, y. PP-reflection is from x

a to x
d.

PS-reflections are from x
a to x

c and from x
d to x

b, re-
spectively. The unit normal to the reflector at y is n.

derivatives (curvatures) of SS-traveltimes. The method
makes it possible to perform a quite accurate prediction
of the SS-wave traveltime parameters and an approximate
prediction of the SS-wave amplitude. It can thus be re-
garded as a modeling approach, with the great advantage
that it requires very limited knowledge of the velocity model.

The present approach does not permit, however, to obtain
a full simulation of the SS-wave, including the effects of
reflection and transmission coefficients, based only on ob-
served PP- and PS-wave amplitudes.

Surface-to-surface traveltime approximations

The formulation and main derivations of the extended
“PP+PS=SS” method proposed here can be conveniently
described using the concepts and basic properties of
surface-to-surface propagator matrices. These are briefly

summarized below, following Červený (2001) as a main ref-
erence. For the zero-offset situation, the papers Bortfeld
(1989) and Iversen (2006) are to be cited. Specific treat-
ment of traveltime is given in Schleicher et al. (1993).

Figure 1 shows a fixed (central) ray that connects a (cen-
tral) source point at an anterior surface, Σs, to a (central)
receiver point at a posterior surface, Σr. The central ray tra-
verses a medium consisting of inhomogeneous anisotropic
layers bounded by curved interfaces. We assume that both
anterior and posterior surfaces, as well as all interfaces and
also the medium within the layers are sufficiently smooth
so that wave propagation is well described by zero-order
ray theory. Orthogonal curvilinear coordinates (xs

1, x
s
2, x

s
3)

and (xr

1, x
r

2, x
r

3) are associated with, respectively, the an-
terior and posterior surfaces, in such a way that xs

3 and
xr

3 are both constants (e.g., equal zero) along these sur-
faces. For the first two components of the curvilinear coor-
dinates we use the vector/matrix notations xs = (xs

1, x
s
2)

T

and xr = (xr
1, x

r
2)

T , where superscript T means transposi-
tion. To avoid unnecessary complication of terminology, we
have not introduced a specific, parallel, notation for points
in 3D space. This means that we refer to such a point as,
e.g., “the point xs”, although, strictly speaking, the vector
xs specifies only two (curvilinear) coordinates of the point
under consideration.

Figure 1 finally shows an arbitrary paraxial ray that starts
on surface Σs and ends on surface Σr. By definition, the
paraxial ray has the same wavemode signature and a suffi-
ciently close trajectory to the central ray. Under the present
assumptions of smooth model parameters and interfaces,
any such paraxial ray is completely determined by the dif-
ferences in the curvilinear coordinates of the initial and end
points relative to the central source and receiver points, re-
spectively. Attached to the central ray, the 4× 4 surface-to-
surface ray propagator matrix has the form

T =

(

A B

C D

)

, (1)

where A, B, C, and D are 2×2 constant submatrices. Ma-
trix T incorporates the dynamic quantities (second-order
derivatives of traveltime) of the central ray, as well as the
properties of the anterior and posterior surfaces and those
of the medium in which the central ray propagates. The
propagator matrix expresses, then, the first-order (linear)
relationship between the relative differences with respect to
the central ray of the projections of the position and slow-
ness vectors onto the anterior and posterior surfaces. The
propagator matrix satisfies the relationships

T
−1 =

(

DT
−BT

−CT AT

)

, Trev =

(

DT BT

CT AT

)

, (2)

which are natural consequences of ray theory. In equa-
tion 2 the operation signified by the superscript rev implies
that the resulting propagator matrix on the left-hand side
corresponds to the reverse ray direction, i.e., the direction
from xr to xs rather than from xs to xr. From equation 2
we obtain C = (DAT

− I)B−T , where I is the 2 × 2 iden-
tity matrix and the superscript −T denotes the transpose
of the inverse matrix.
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The propagator matrix satisfies also the important continu-
ation property or chain rule, which states that, if T(xb,xa)
is the propagator matrix of a ray that connects xa to xb, and
for a given intermediate point, xc, along the ray, T(xc,xa)
and T(xb,xc) are the propagator matrices for the rays seg-
ments from xa to xc and from xc to xb, respectively, then

T(xb,xa) = T(xb,xc) T(xc,xa) . (3)

The second-order Taylor expansion of traveltime of a parax-
ial ray in terms of its relative source and receiver coordi-
nates is given by (see, e.g., Schleicher et al., 1993)

t(xr, xs) = t0 + (pr0)T ∆x
r
− (ps0)T ∆x

s(∆x
r)T

M
rs∆x

s

+
1

2
(∆x

r)T
M

rr∆x
r +

1

2
(∆x

s)T
M

ss∆x
s , (4)

where t0 = t(xs0,xr0) is the traveltime along the cen-
tral ray and ps0 = (∂t/∂xs) and pr0 = (∂t/∂xr) are
the coefficients of the linear (slowness) terms. More-
over, (∂2t/∂xs∂xr), Mss = (∂2t/∂xs∂xs) and Mrr =
(∂2t/∂xr∂xr) are the coefficients of the quadratic terms.
All the derivatives are evaluated for xs = xs0 and xr = xr0.
The symmetric matrix Mss is related to the wavefront cur-
vatures at xr0 for a point source at xs0, while the symmetric
matrix Mss is related to the wavefront curvatures at xs0 for
a point source at xr0. Matrix Mrs of second-order mixed
derivatives is related to the relative geometric spreading.

The traveltime approximation in equation 4 has the same
structure as the ones defined for paraxial rays with arbi-
trary 3D relative source and receiver coordinates (see, e.g.,
Ursin, 1982). By squaring equation 4 and retaining the
terms up to second order only, we obtain the more com-
monly used Taylor series for traveltime squared. From the
basics of Taylor series expansions, the approximation 4 is
valid for ”sufficiently small” arguments, xs and xr, meaning
that paraxial rays should be ”sufficiently close” to the cen-
tral ray. A general quantification of the accuracy of the ap-
proximations is impossible, as it depends on the properties
of the medium, basically smoothness of medium parame-
ters and interfaces. In spite of their limited accuracy, Taylor
approximations have been used with quite good success in
seismic imaging. With the help of the propagator matrix,
we have the important relationships

M
rr = DB

−1, M
ss = B

−1
A and M

rs = −B
−1. (5)

From these, the matrix components, A, B, C and D, of
the propagator matrix, T, can be obtained. In the following,
we assume that the traveltime Taylor series expansions are
valid, and that the traveltime parameters, t0, ps0, pr0, Mrr,
Mrs and Mss, can be estimated from the seismic data.

SS-TRAVELTIME PARAMETERS

We consider survey configurations with source and re-
ceiver points distributed on two surfaces, as follows: Ac-
quisition surface 1 (e.g., the ocean surface), denoted as
Σ1, shall consist of source points for PP-reflected and PS-
reflected waves and receiver points for PP-reflected waves.
Acquisition surface 2 (typically the ocean bottom), denoted
as Σ2, consists of receiver points for PS-reflected waves.
As a special case (land seismics) these two surfaces coin-
cide. For the common situation in ocean bottom seismics

that the PP-reflected waves have actually been recorded
on the ocean bottom (surface Σ2), it will be necessary
either to perform receiver-redatuming of the PP-reflected
events to surface Σ1, or to perform source-redatuming of
all PP- and PS-reflected events to surface Σ2.

With the above requirements on sources and receivers, we
consider one PP-wave and two PS-waves for the same re-
flection point y, as outlined in Figure 2. The slowness
vectors and the normal vector, n, of the reflecting inter-
face at the point y all lie in a common plane (Snell’s law).
The source and receiver points corresponding to the PP-
reflection at y are denoted, respectively, as xa and xd.
Correspondingly, the receiver points of the two PS-waves
reflected at y are denoted xb and xc. As also shown in
Figure 2, the PP-ray intersects surface Σ2 at the points xα

and xδ, respectively.

In the above perspective, the points xb and xc can be con-
sidered as virtual source and receiver points of an SS-
wave reflected at the point y. Moreover, for any given
PP-wave source/receiver couple, (xa,xd), the correspond-
ing SS-wave virtual source/receiver couple, (xb,xc), will be
unknown. In order to determine (xb,xc), we start by iden-
tifying a PP-reflection for the couple (xa, xd) and estimate
its traveltime parameters. Next, the PS-waves from xa to
xc and from xd to xb are identified such that the slowness
vectors of the P-waves at xa and xd are parallel to the cor-
responding PP-wave slowness vectors at the same points
(Grechka and Tsvankin, 2002). The traveltime parameters
for the two PS-waves are also estimated. It is then straight-
forward to show that the traveltime for the SS-wave satisfies
the equation derived by Grechka and Tsvankin (2002) un-
der the assumption of a common acquisition surface for all
sources and receivers, namely,

tSS(xc,xb) = tSP (xc,xa)+tSP (xb,xd)−tPP (xd,xa) . (6)

Using the continuation property of the propagator matrix
(see equation 3), the surface-to-surface ray propagators of
PP- and PS-reflections are given by:

TPP (xd,xa) = TP (xd,xδ)TP (xδ,y)TP (y,xα)TP (xα,xa),
TSP (xc,xa) = TS(xc,y)TP (y,xα)TP (xα,xa) ,

TSP (xb,xd) = TS(xb, y) TP (y,xδ)TP (xδ,xd) .
(7)

Here, the superscripts denotes the wavetypes and the in-
dexing is from right to left (as in equation 6). For further
use, we note that

T
S(y,xb) = [TP (xδ, y)]−1[TP (xd,xδ)]−1[TSP (xb,xd)]rev,

(8)
where the inverse and reverse matrices are given in equa-
tion 2. Using the continuation property in equation 3, the
SS-wave propagator matrix can be factored as

T
SS(xc,xb) = T

S(xc,y) T
S(y,xb) . (9)

Then, by inserting equations 8 into equation 9 and af-
ter some algebra, it follows that the surface-to-surface ray
propagator for the SS-wave from xb to xc is given by

T
SS(xc, xb) = T

SP (xc, xa)[TPP (xd, xa)]−1[TSP (xb,xd)]rev.
(10)
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Equation 10 constitutes the main theoretical result of this
paper. From the ray propagator matrix for the SS-wave we
can compute the second-order traveltime parameters using
equation 5.

SLOPE MATCHING BASED ON SECOND-ORDER
TRAVELTIME DERIVATIVES

The extended “PP+PS=SS” method described above
makes use of computed second derivatives of PP- and PS-
wave traveltimes. This offers the possibility of using such
derivatives to match slopes of PP- and PS-reflections.

Consider the problem of finding a root ξ of the nonlinear
vector equation f(ξ) = 0 using an iteration technique of
the Newton-Raphson type. Under the assumption of equal
dimensionality of ξ and f , the inherent linearization of each
iteration step yields the following update of ξ with respect
to the current solution ξ0,

ξ = ξ
0
−

[

∂f

∂ξT
(ξ0)

]−1

f(ξ0) . (11)

The slope matching consists of two independent steps,
which collectively make use of equation 11. In the first step
we consider a PS-wave for which the source point is lo-
cated at xa (Figure 2). The function f is defined by

f(ξ) =
∂tPP

∂xa
(xd, xa) −

∂tSP

∂xa
(ξ,xa) , (12)

with the first derivatives given by

∂f

∂ξT
(ξ) =

∂2tSP

∂ξ ∂xaT
(ξ,xa) = −M

rs(ξ,xa) . (13)

The matrix Mrs in equation 13 belongs to the PS-wave. We
let the iteration process proceed until the criterion f(ξ) = 0

is satisfied, which yields the sought solution ξ = xc. In the
second step we consider another PS-wave, having xd as its
source point (Figure 2). The function f and its derivatives
can now be specified by

f(ξ) =
∂tPP

∂xd
(xa,xd) −

∂tSP

∂xd
(ξ,xd) , (14)

∂f

∂ξT
(ξ) =

∂2tSP

∂ξ ∂xdT
(ξ,xd) = −M

rs(ξ,xd) . (15)

Again, the matrix Mrs belongs to the PS-wave. The out-
put from this second iteration step is the solution ξ = xb.
Note especially that only one iterative slope-matching step
is required in the normal-incidence situation. The slope
matching procedure finds the (virtual) SS-wave source and
receiver points xc and xd which correspond to the (real)
source and receiver points for the recorded PP-waves. The
convergence of this Newton-Raphson formulation is fast,
required that the applied second-order traveltime deriva-
tives are smooth functions. An alternative is to use a non-
linear inversion technique that does not require computa-
tion of the first derivatives of the function f (and thus the
second derivatives of the traveltimes). Such techniques are
generally slower, although more robust, than the Newton-
Raphson approach.
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Figure 3: (a) PP-wave rays, (b) PS-rays

Numerical example

In this section we present a numerical example demon-
strating the extended “PP+PS=SS” method. Our experi-
ment is conducted with a model similar to the one used
by Grechka and Tsvankin (2002). The model is two-
dimensional and consists of three homogeneous VTI lay-
ers. The layers are separated by smoothly curved inter-
faces, which were generated by digitizing the interfaces
plotted in Grechka and Tsvankin’s paper. For the latter rea-
son, the models used by Grechka and Tsvankin (2002) and
us are not exactly the same; however, in practice they can
be considered equal. We consider quasi-P and quasi-SV
wave types. Hence, in each layer the wave propagation is
described by four parameters, specified using Thomsen’s
(1986) representation:

• Top layer: VP0 = 2.0 km/s, VS0 = 0.8 km/s, ǫ = 0.20,
δ =0.10

• Middle layer: VP0 = 2.5 km/s, VS0 = 1.25 km/s, ǫ =
0.25, δ =0.05

• Bottom layer: VP0 = 3.0 km/s, VS0 = 1.8 km/s, ǫ =
0.15, δ =0.10

Traveltime “observations” corresponding to PP and PS re-
flections from the lowest interface of the bottom layer were
generated using ray tracing. Figure 3 shows PP rays (a)
and PS rays (b) for a common receiver at the horizontal
coordinate x = 0.5 km. The corresponding traveltime ob-
servations for all source and receiver locations are shown,
respectively, in Figure 4.

The (a), (b), and (c) subfigures constituting Figure 5 show
the PP-, PS-, and SS-wave relative geometric spreading
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Figure 4: Simulated traveltime data (s) for waves re-
flected at the lowermost interface: (a) PP-wave, (b)
PS-wave, and (c) SS-wave.

computed using the traveltime data in the corresponding
subfigures of Figure 4. The simulated “true” SS-wave rel-
ative geometric spreading in Figure 5c is used below for
comparison with the estimated results obtained using the
extended “PP+PS=SS” method. The simulated relative
geometric spreading for the PP- and PS-waves are not
used in this method, but the two plots nevertheless serve
to indicate the stability of the second-derivatives of the ob-
served PP- and PS-traveltime functions.

In order to get an impression of the robustness of the ex-
tended “PP+PS=SS” method, we added Gaussian noise
with a standard deviation of 2 ms to the input data, i.e., the
PP- and PS-traveltimes in Figures 4a and 4b. For this noise
level, the inherent smoothing provided by the B-spline rep-
resentation was not sufficient to ensure stable calculation
of second derivatives. Therefore, we introduced additional
smoothing in the form of a repeated application of a Ham-
ming operator, applied independently to the various coordi-
nate directions. This Hamming operator smoothing is con-
strained by a certain aperture, defined as the maximum
distance within which a given data sample will contribute
to the smoothing of neighboring samples. Figure 6 shows
the estimated virtual source and receiver positions for the
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Figure 5: Simulated relative geometric spreading
data (km2/s) for waves reflected at the lowermost in-
terface: (a) PP-wave, (b) PS-wave, and (c) SS-wave.
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Figure 6: Reconstructed SS-wave source-receiver
pairs obtained by slope matching on PP- and PS-
traveltime input data containing noise. Aperture of
Hamming-operator smoothing is 0.8 km.

SS-wave using a Hamming operator smoothing with aper-
ture 0.8 km prior to the slope matching process. Using
Hamming operator smoothing with aperture 0.8 km on the
noisy input traveltime data, we obtained the SS-traveltimes
of Figure 7 and geometric spreadings of Figure 8. The
mean errors are 0.08 % in traveltime and 0.6 % in relative
geometric spreading, while the corresponding standard de-
viations are 0.46 % and 12.3 %.
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Figure 7: a) Estimated SS-wave traveltime (s), for
PP- and PS-traveltime input data containing noise.
Applied Hamming-operator smoothing aperture: 0.8
km. (b) Error in estimated SS-wave traveltime (%).
Mean value: 0.08 %. Standard deviation: 0.46 %.
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Figure 8: (a) Estimated SS-wave relative geometric
spreading (km2/s), for PP- and PS-traveltime input
data containing noise. Applied Hamming-operator
smoothing aperture: 0.8 km. (b) Error in estimated
SS-wave relative geometric spreading (%). Mean
value: 0.6 %. Standard deviation: 12.3 %.

CONCLUSIONS

For a given target reflector, the full surface-to-surface prop-
agator matrix of an SS-wave can be obtained from the cor-
responding surface-to-surface propagator matrices of the
PP- and PS-waves of the same reflector. This new re-
sult, which captures the second-order derivatives of SS-
wave traveltime, extends the counterpart scheme of retriev-
ing the SS-wave traveltime and slope, known in the litera-
ture as the “PP+PS=SS” method. The knowledge of the
second-order derivatives of the SS-traveltime permits to
determine, besides the relative geometric spreading, also
the common-source and common-receiver traveltime cur-
vatures of the SS-wave. In the same way as for PP-waves,
these quantities represent useful constraints for the con-
struction of a seismic velocity model by means of tomo-
graphic methods. Our investigation showed, however, that
the proposed approach cannot provide the full amplitude
of the SS-wave. The reason is the the SS-wave reflection
and transmission coefficients are impossible to be retrieved
from the PP- and PS-amplitudes only.
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