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Summary 
  
  
  
In the last few years, geophysics has been one of the most rapidly developing 
parts of petroleum geoscience. Previously, we have used seismics and the 
concepts of wave propagation for oil-gas exploration. Later, with more 
understanding of rocks, porous media, and the connections between geophysics, 
petrophysics, reservoir engineering and geology, several scientists have started 
investigations to study wave theory for the prediction and detection of many 
reservoir properties such as lithology, pore fluids, and pressure. The applications 
of elastic waves are made, not only in seismic surveying, but also in laboratory 
studies and well logging. The task is difficult, but this difficulty is correlated with 
the importance of these applications to acquisition, processing, and interpretation 
of high-resolution seismic data, and to deducing the physical properties of the 
rocks from seismic data. In fact, elastic analysis is one of the surest means 
available for the remote investigation of porous rocks. We are now becoming 
more quantitative and detecting properties ever on the finer scale of the rocks.  
  
In my Dr.ing. project, I have built and investigated a model based on a more 
complete physical theory to account for the effects of many reservoir properties 
such as porosity, clay contents, pore fluid and pressure on acoustic wave 
velocities and attenuation. The model can match the seismic properties for the 
whole frequency range between laboratory measurements at ultrasonic 
frequencies (1MHz), sonic well data (10 kHz) and seismic data (30 Hz). It is 
based on Biot’s theory (Biot, 1956) but includes other mechanisms such as 
thermal effects, intergranular friction, squirt flow treated as the viscoelastic 
effect, partial saturation and pressure effects (Pham et al., 2002c).  
  
This project is a part of the EU project ‘detection of overpressure from seismic 
and well data’. Therefore, the motivation of this project is to predict and detect 
the abnormally high pore pressure. Knowledge of pore pressure using seismic 
data helps in planning the drilling processes to control potentially dangerous 
abnormal pressures. Various physical processes cause anomalous pressures on an 
underground fluid. Proper pore pressure prediction should involve drilling 
engineers, geologists, geophysicists, and petrophysicists. As a practical test of 
this model it has been applied to predict overpressure in the Tune field (Carcione 
et al., 2002a). Moreover, the model can be used for detection of several other 
formation properties such as saturation, porosity, and clay content from elastic 
properties such as velocities and attenuation.   
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Project was extended to study the effects of partial saturation on P-wave velocity 
and attenuation by introducing a number of numerical experiments.   
 
The results reveal the behaviour of natural sandstones. For instance: Both P- and 
S-wave velocities increase with increasing frequency and decreasing clay content. 
There is a strong decrease in velocity and Q-factor with increasing pore pressure. 
In partially saturated rocks, wave propagation depends not only on the saturation 
but also on the distribution of the fluid phase at various scales. The numerical 
result reveals the conversion of fast P-wave, into slow P-waves, is the main 
mechanism of wave dissipation and velocity dispersion in partially saturated 
rocks. This phenomenon may explain low signal-to-noise P-wave sections, since 
the presence of gas reduces velocities and increases attenuation. The strong 
responses of both P-wave velocity and dissipation correspond to permeability 
while at full saturation the sensitivity to permeability is insignificant, i.e., the 
biot’s effect is insignificant in fully saturated rocks while it become dominant in 
partially saturated rocks. The relaxation peaks in our numerical result are 
generally in good agreement with White’s model and the expression of relaxation 
peak (Dutta and Seriff, 1979; Gist, 1994). 
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Symbols  
  
  
  
A      dimensionless empirical parameter 
a      dimensionless empirical parameter 
a21    tortuosity for the fluid flowing though the sand matrix 
a13    tortuosity for the sand flowing though the clay matrix 
a31     tortuosity for the clay flowing though the sand matrix 
B      friction matrix 
b11    friction coefficient between the sand matrix and the fluid 
b13    friction coefficient between the sand and the clay matrices 
b33    friction coefficient between the clay matrix and the fluid 
C      clay content 
c1     consolidation coefficient of the sand matrix 
c3      consolidation coefficient of the clay matrix 
dm     deviator (m = 1,3 ) 
Ek     kinetic energy 
Ep     potential energy 
F      viscous resistance force 
f frequency 
fc      critical frequency 
g1        consolidation coefficient of the sand matrix 
g3     consolidation coefficient of the clay matrix 
Kc     bulk modulus of clay   
Kf     fluid bulk modulus   
Ks     bulk modulus of the sand grain   
Kav   average bulk modulus 
Kcm   bulk modulus of the clay matrix 
Ksm   bulk modulus of the sand matrix 
nK     effective stress coefficient for bulk modulus 
nm     effective stress coefficient for shear modulus 
q      relative displacement vector 
Q quality factor 
R      bulk stiffness matrix 
r       relative displacement vector 
R      average radii of sand and clay particles   



   

 viii

ρ      mass density  matrix 
ρ effective density 
ρc     clay density 
ρ f     fluid density 
ρg     gas density 
ρs     sand density 
ρw    water density 
ρij     generalised mass coefficients (i,j = 1,2,3; see Appendix A) 
p      pressure 
pc     confining pressure 
pd     differential pressure 
pe     effective pressure 
Po     pore pressure       
r12    geometrical aspect ratio of  the boundary separating the sand 

grains from the fluid phase 
r13    geometrical aspect ratio of  the boundary separating the sand 

grains from the clay 
r23     geometrical aspect ratio of  the boundary separating the clay from 

the fluid phase 
r31     geometrical aspect ratio of  the boundary separating the clay from 

the sand grains 
T      total tortuosity 
VPm   P-wave phase velocity (m = 1,2,3) 
VSm   S-wave phase velocity (m = 1,2) 
Sw     water saturation 
Swc critical saturation  
Sg     gas saturation 
s       microscopic particle-velocity vector 
t       microscopic particle-velocity vector 
um     displacement vector (m = 1,2,3) 
vm     microscopic particle-velocity vector (m = 1,3) 
wm    relative displacement vector (m = 1,3) 
α1     fluid/sand matrix coefficient 
α3     fluid/clay matrix coefficient 
β1     clay/sand matrix coefficient 
β3     sand/clay matrix coefficient 
αPm  P-wave attenuation factor (m = 1,2,3) 
αSm   S-wave attenuation factor (m = 1,2 ) 
ηf      fluid viscosity 
ηg     gas viscosity 
ηw    water viscosity 
κ      permeability 
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κ1
      (partial) permeability of the sand matrix 

κ3  
   (partial) permeability of the clay matrix 

κe
     effective permeability 

κri
     relative permeability (i = w,g) 

ΛPm   P-wave root of  the dispersion equation (m = 1,2,3) 
µc     shear  modulus of  the clay ; 
µs     shear  modulus of  the sand grains 
µcm   shear modulus of the clay matrix 
µsm   shear  modulus of  the sand matrix 
µ      shear stiffness matrix 
µ11   same as µsm 
µ13    shear coupling between the sand and the clay matrices 
µ33   same as µcm 
Ωsm   S-wave root of the dispersion equation ( m = 1,2 ) 
ω      angular frequency : 2πf 
φc     proportion of  the clay 
φ      proportion of  the fluid or porosity 
φs     proportion of the  sand grains 
θm     dilatation (m = 1,2,3) 
τ stress 
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 Chapter 1 

 
Introduction 
  
  
  
The successful development in geophysics of a better interpretation of seismic 
data related to reservoir properties depends on knowledge of wave propagation 
through porous media. Porous media are, by their essence, composite and 
multiphase. Composite because the solid fraction - the skeleton - is formed of 
grains whose chemical or crystalline features are often different and multiphase 
because this solid fraction is always associated with a gas or liquid phase that 
occupies the voids between the grains. This microscopic heterogeneity of the 
porous medium induces a complex macroscopic physical behaviour sensitive to 
slight variation in fluid content or of the solid structure. The acoustics of porous 
media attempts to characterise the behaviour of the waves by synthesising 
between the rigor of the laws of mechanics and the natural disorder of porous 
media. Several theories have been developed and applied in this field. 
  
Gassmann (1951) derived a relation between the individual elastic properties of 
the solid fabric (skeleton, matrix) and the effective elastic properties of the 
composite medium. Biot (1956) developed the theory for the propagation of 
acoustic waves in a porous material containing a compressible viscous fluid. He 
developed different theories for the low and high frequency waves. For low-
frequency waves, the concept of Poiseuille flow was used, while for the high-
frequency range, this concept breaks down, and potential flow is used instead. 
Biot found that in general there are two P-waves present, one slow and one fast. 
    
The most interesting area of application, at least for its economic benefits, is for 
sandstone reservoirs saturated with hydrocarbons. In general, sandstones contain 
some clay material that considerably affects the wave properties, such as 
compressional and shear wave velocity and attenuation. In this study, based on 
physical theory combined with experimental data, we have attempted to build a 
more comprehensive multiphase model for shaley sandstone, which is one of the 
common rocks in hydrocarbon reservoirs. Figure 2.1 shows an example of typical 
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rocks in a sandstone reservoir where clay is present. The theory can be used for 
other kinds of rocks such as sandy shale, carbonates, and others. 
  
Unlike previous attempts based simply on slowness and/or modulus averaging or 
on two-phase models, we started by investigating the Biot-type three-phase 
theory (Leclaire et al., 1994; Carcione et al., 2000) that considers the existence of 
two solids, i.e. sand grains and clay particles, and the fluid. The terms responsible 
for the interaction between sand grains and clay particles are included in the 
kinetic and potential energies of the system. The bulk and shear moduli of the 
sand and clay matrices versus porosity are obtained using the (modified) 
relationships of Krief et al.(1990), where empirical parameters can be adjusted 
for calibrating the model against experimental data.  
  
Since the model is based on a Biot-type formulation of the wave equation, 
additional compressional and shear waves are predicted and their frequency 
characteristics are shown to be strong functions of clay and fluid contents. In the 
particular case when the clay content tends to zero, the model is shown to behave 
like the classical two-phase Biot’s medium for a fully saturated pure sand matrix.  
  
Moreover, several effects have been considered and taken into account in order to 
obtain a comprehensive multiphase model. These are; (i) the effect of clay on 
permeability, (ii) the frequency dependent viscodynamic operator, (iii) 
viscoelasticities of the grain material and squirt flow (iv) fluid pressure, and (v) 
partial saturation when there is more than one fluid present in pores.   
  

In Biot’s theory, which takes into account the different particle displacements of 
solid and fluid components, the permeability is important for the dynamic 
dissipation of acoustic waves. Here, we use a permeability model of the Kozeny-
Carman type (Carman, 1961), which relies on porosity, clay content and 
tortuosity, and is calibrated against the experimental data of Klimentos and 
McCann (1990).  
  
The acoustic waves passing through porous media supply energy to the media 
and induce a fluid flow. Low frequency waves (e.g. seismic frequencies) induce 
laminar flow, while, at high frequencies (e.g. sonic and ultrasonic frequencies) 
the laminar flow breaks down and becomes turbulent. In this case, the 
viscodynamic operator should be introduced to account for the transition from 
laminar to turbulent flow regimes. The viscodynamic operator is implemented by 
using a dynamic tortuosity (Johnson et al., 1987), which accounts for the dynamic 
properties of the fluid motion in the pores and is valid for the whole frequency 
range.  

  
Wave properties such as velocities and attenuation in fluid saturated rocks are 
known to vary with frequency. Biot (1956) considers this, but several 
observations have demonstrated that Biot’s theory of dynamic poro-elasticity 
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alone cannot explain the measured dispersion of real rocks. The dispersion due to 
local flow (squirt flow), grain friction, thermal loss, and intrinsic attenuation is 
not accounted for. The essential concept behind the squirt flow (local flow) is that 
the fluid tends to flow from the compliant (mechanically weaker) regions to the 
less compliant (mechanically stronger) regions when an acoustic wave deforms 
the pore space. Fluid in flat cracks tends to be squeezed into more rounded pores, 
which are stiffer when the acoustic wave passes. In order to describe the squirt 
flow phenomenon we use the standard linear-solid model (Zener type) (Carcione, 
1998). For presenting other attenuation mechanisms such as friction loss, thermal 
loss, and intrinsic attenuation, we use a constant-Q model, which is applied to the 
dry-rock moduli (Kjartansson, 1979). Constant-Q models provide a simple 
parameterisation of seismic attenuation in natural rocks in oil exploration and in 
seismology (Pham et al., 2001 and 2002c).  
  

The problem is more complex in the case when there is more than one fluid type 
in the porous rock. A simple solution is to apply mixing laws to obtain the 
effective properties of the mixture. For liquid/liquid mixtures such as oil/water, 
Biot’s theory may apply even at high frequencies since the properties of the two 
fluids are similar. For a gas/liquid mixture, on the other hand, the problem is 
entirely different since their properties, i.e. viscosity, density and bulk modulus 
may differ by orders of magnitude and the Biot-Gassmann theory cannot 
reproduce the observed features at high frequency. The main challenge was thus 
to determine the appropriate mixing laws that were applicable within the 
framework of Biot’s theory to reproduce the experimental data.  We introduced 
the semi-empirical model of Brie et al. (1995) for the bulk modulus of a gas/fluid 
mixture, modified to account for its frequency dependency (Pham et al., 2002c). 
Moreover, numerical wave simulation experiments using the Biot poroelastic 
equations were conducted to support the results (Pham et al., 2002a,b, Helle et 
al., 2002a and Carcione et al., 2002b).  
 
Observations show that the velocity and quality factor (Q-factor) increase with 
increasing confining pressure and decrease with pore pressure. This is usually 
considered to be due to the closing of cracks in the rock matrix, inducing a 
stiffening of the rocks and preventing the fluid motions. In the present study, the 
pressure effects are introduced by using the effective stress law of Carcione and 
Gangi (2000a,b). The pressure dependency of the dry-rock moduli is determined 
by inversion of well data or laboratory measurements.  
 
For instance, this model was applied to pressure prediction of the Tune field 
(Carcione et al., 2001b, 2002a). Here, calibration of the model was based on well 
log data to obtain the dry-rock moduli and the effective stress coefficient as a 
function of depth and pore pressure. Then the seismic velocity derived from 
velocity inversion was fitted with the theoretical velocities by using pore pressure 
as a fitting parameter.  
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The sensitivity of phase velocities and attenuation to pore fluids lies in the heart 
of most schemes for direct detection of hydrocarbons. However, the task of 
interpreting the seismic response is difficult due to the complexity of the rock and 
is harder when two or more fluids occupy the pore space. In order to study the 
effects of saturation and fluid distribution on the wave velocities and attenuation 
as a function of frequency, we perform numerical wave propagation experiments 
in rocks partially saturated with water and gas, using a 2-D poroelastic algorithm 
developed by Carcione and Helle (1999). This method is highly accurate 
provided a sufficiently fine grid is used. Moreover, the generation of snapshots 
and seismograms provides direct insight into the various wave phenomena and 
hence constitutes an important aid in interpreting and understanding the physical 
mechanisms of wave propagation in realistic media.  The numerical results are in 
qualitative, and reasonable quantitative, agreement with published experimental 
results. Furthermore, our numerical experiments of wave propagation are 
compared with those of White’s theory for partial saturation (White, 1975).  
  
The main objective of this project is to develop a rock physics model based on a 
more complete physical theory enabling us to match the wave properties for all 
frequencies from the seismic to the ultrasonic band.  One of the central aspects of 
the project is the need for a better understanding of the relationship between the 
seismic properties of reservoir rocks, their production related properties (porosity, 
permeability, clay content) and their state (saturation, pore pressure). 
  
In exploration, elastic means P- and S-waves, while acoustic means P-waves 
only. Poro-elasticity refers to a porous media where only Biot’s effect (global 
flow) contributes to wave dissipation. Poro-viscoelasticity refers to a porous 
media where there exist additional dissipation mechanisms such as squirt flow, 
viscous loss in the solid, thermal effects, and others.   
 
In chapter 2, I introduce the poroelastic representation of shaley sandstones, 
which is based on Biot's theory applied to a three-phase medium, i.e. the two 
solids sand and clay and a single fluid (Carcione et al., 2000). The permeability 
of the composite matrix is based on the Kozeny-Carman model. Moreover, the 
viscoelastic effect is implemented in the theory. An example is provided to 
demonstrate the variation in velocities and attenuation of the different wave 
modes as a function of clay content and frequency. Here we have five different 
wave modes, three compressional waves (one fast wave and two slow waves) and 
two shear waves (one fast and one slow wave). In chapter 3, the viscoelastic 
effect is introduced into the theory. Here, the constant-Q model is implemented in 
the moduli of the sand matrix and the standard linear-solid model presented for 
squirt flow is introduced in the fluid-solid coupling modulus (Carcione, 1998). In 
chapter 4, I present the effect of partial water/gas saturation on elastic wave 
response. In this model, we use the empirical fluid mixing laws for the mixture of 
fluids. The model is calibrated and compared with experimental data of King et 
al. (2000) (Pham et al. 2001 and 2002c). Chapter 5 shows the effect of pressure 
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on elastic wave responses and a method for pressure prediction from seismic 
reflection data. The method is applied to the Tune field in the Viking Graben of 
the North Sea to predict the high-pressure zone from 3-D seismic data (Carcione 
et al., 2002a). In chapter 6 numerical experiments in patchy saturated rocks are 
presented.  Here the fluid distribution is based on data from Cadoret et al. (1995) 
and modelled using the random-fractal approach (Frankel and Clayton, 1986). 
The wave simulation is based on the numerical solution of the poroelastic wave 
equation (Biot, 1962; Biot and Willis, 1957) on a 2-D staggered mesh (Carcione 
and Helle, 1999, Pham et al., 2002a,b and Helle et al., 2002a). Chapter 7 is an 
extension of Chapter 6 and is devoted to the comparison of results from White’s 
theory of wave propagation in partially saturated rocks with those from numerical 
experiments (Carcione et al., 2002b). 
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 Chapter 2 

 
Poro-elastic representation of shaley 
sandstones 
  
  
  
2.1 Introduction 
  
Modelling the acoustic properties of shaley sandstones implies quantifying the 
variations of wave velocities VP, VS and their amplitudes versus porosity, clay 
content and frequency. This is done within the framework of Biot’s theory of 
poro-elasticity. 
  
For clay/sand mixtures, such an approach requires the consideration of a medium 
consisting of three phases: sand, clay, and fluid. A three-phase Biot-type theory 
was developed by Leclaire et al. (1994) for frozen porous media. This three-phase 
theory assumes that there is no direct contact between sand grain and ice, 
implying the existence of a water layer around the grains, isolating them from the 
ice. The model, which predicts three compressional waves and two shear waves, 
has recently been applied, with some minor modifications, to modelling the 
acoustic properties of permafrost (Carcione and Seriani, 1998) and gas hydrates 
(Carcione and Tinivella, 2000) 
  
Carcione et al. (2000) replaced ice with clay and included the terms responsible 
for the interaction between the sand grains (pure quartz grains) and the clay 
particles in the potential and kinetic energies. Lagrange’s equations provide the 
differential equations of motion. A plane-wave analysis gives the wave velocities 
and attenuation factors of the different modes. The bulk and shear moduli of the 
sand and clay matrices versus porosity are obtained from a relationship proposed 
by Krief et al. (1990). This relationship introduces two empirical parameters that 
can be obtained by calibrating the model with experimental data. An additional 
parameter provides one more degree of freedom for adjusting the velocity-
porosity curves (at constant clay content) to the data. 
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The model for shaley sandstones provided by Carcione et al. (2000) is somewhat 
similar to that recently proposed by Goldberg and Gurevich (1998). An important 
difference, however, is associated with our three-phase approach. Indeed, 
Goldberg and Gurevich (1998) assumed that the medium is composed of only 
two phases, solid and fluid. The solid matrix, in turn, is a composite material, 
made of sand grains and clay particles. The elastic moduli of the solid/fluid 
mixture were derived using the Gassmann’s equation. However, the latter is valid 
only when the solid matrix is homogeneous (Brown and Korringa, 1975). This 
implies that the sand and clay particles are mixed homogeneously and form in 
effect composite grains, which in turn form the rock matrix. The three-phase 
approach is free of such assumption, but it also implies a particular topological 
configuration, namely the one where sand and clay form two continuous and 
interpenetrating solid matrices (see Figure 2.1).  
  
 
  
  
  
  
       
  
  
  
  
  
  
  
  
  
  
  
  
2.2 Biot-type three-phase theory 
  
As mentioned above, we have started by investigating the Biot-type three-phase 
theory that considers the existence of two solids (i.e. sand grains and clay 
particles) and one fluid. The theory developed first by Leclaire et al. (1994) 
explicitly takes into account the presence of three phases: solid, ice and water, 
which is applied for frozen media. Later, Carcione et al. (2000) replaced ice with 
clay and included the contributions to the potential and kinetic energies due to the 
contact between the sand grains and the clay, which are needed for shaley 
sandstone.    
  
  

Figure 2.1: Interpenetrating sand (dark grey) and clay (light grey) matrices 
forming the composite skeleton of the shaley sandstone. 
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2.2.1  Model for shaley sandstone 
  
Following Carcione et al. (2000), the equation of motion can be written in matrix 
form as 

.. .
 grad div curl curl  − = +R u µ u ρu Bu                                    (2.1)  

          
where u is the displacement field, the dot denotes as time differentiation.  
  

11 12 13

12 22 23

13 23 33

R R R
R R R
R R R

 
 
 
 
 

=R

       

and      
11 13

13 33

0
0 0 0

0

µ µ

µ µ

 
 
 
 
 

=µ                                         (2.2) 

  
 R and µ are the bulk and shear stiffness matrices, while 
  

                        
11 12 13

12 22 23

13 23 33

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

 
 
 
 
 

=ρ                                                                   (2.3) 

  
is the mass density matrix, and 
  

                        
11 11

11 11 33 33

33 33

0

0

b b
b b b b

b b

 
 
 
 
 

−
= − + −

−
B                                                         (2.4) 

  
where index i = 1,2,3 denotes sand, water and clay, respectively. The parameter 
b13, which describes the interaction between the sand and clay matrices, has been 
assumed equal to zero. The fact that there is a frictionless connection between the 
two constituents can be interpreted as meaning that the sand and clay frames are 
welded together. There is an interchange of kinetic energy (described by ρ13) and 
potential energy (described by R13 and µ13) at the contact points, but no 
dissipation. Details are given in Appendix A and in Carcione et al. (2000). 
  
 
2.2.2  Dry-rock moduli 
  
The model of Krief et al. (1990) is considered to obtain estimates of the dry-rock 
moduli Ksm, µsm (sand matrix), Kcm and µcm (clay matrix) versus porosity and clay 
content. The porosity dependency of the sand and clay matrices should be 
consistent with the concept of critical porosity, since the moduli should vanish 
above a certain value of the porosity (usually from 0.4 to 0.5). This dependency is 
determined by the empirical coefficient A (see equation 2.5). The coefficient A 
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depends on texture of the rocks (the orientation of grains and the shape of the 
pores). This relation was suggested by Krief et al. (1990) and applied to sand/clay 
mixtures by Goldberg and Gurevich (1998). Moreover, in some rocks there is an 
abrupt change of rock matrix properties with the addition of a small amount of 
clay. This is attributed to softening of cement, clay swelling and surface effects, 
i.e. the velocities decrease significantly when the clay content increases from zero 
to a few percent (Goldberg and Gurevich, 1998). In order to model this effect 
Carcione et al. (2000) introduced an empirical coefficient a for the shear modulus 
of sand matrix with values in the range [0,1]. The bulk and shear moduli of the 
sand and clay matrices are respectively given by 
  

                         

1 /[1 ]

1 /[1 ]

[1 ][1 ]
[1 ]

/
/ ,

A
sm s

A
cm c

sm sm s s

cm cm c c

K K C
K K C

F K K
K K

φ

φ

µ

φ
φ

µ µ
µ µ

+ −

+ −

= − −

= −
=
=

                                               (2.5) 

                       
where the additional factor Fµ = exp[−((1 − C)C)a] is introduced by Carcione et 
al. (2000) (Fµ = 1 for the Krief et al.’s model). C is the clay content, φ is porosity, 
Ks and µs are the bulk and shear moduli of the sand grains, while Kc and µc are 
those of the clay particles. Krief et al. (1990) set the A parameter to 3 regardless 
of the lithology, and Goldberg and Gurevich (1998) obtained values between 2 
and 4, while Carcione et al. (2000) used A = 2. The ideal approach is to estimate 
its value using well data from the study area.  
  
  
2.2.3  Phase velocity and attenuation 
  
By solving the equation (2.1), we obtain three solutions of the P-wave velocities 
and attenuation and two solutions for shear wave.  
  
The three compressional velocities of the three-phase porous medium are given 
by 
 

                               ( )
1

Re ,     1,..,3,iPiV i
−

 
  

= Λ =                                           (2.6) 

  
and the attenuations are given by  
                              

                               1 Im( ) ,     1,..,3,
Re( )

i
Pm

i
Q i− Λ= − =

Λ
                                               (2.7) 

  
where Re and Im are the real and imaginary parts and Λi are obtained from the 
generalised characteristic equation det[ ] 0Λ − =R ρ , which yields            
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                               3 2det[ ] [ ] [ ] det[ ] 0,tr trΛ −Λ +Λ − =R Rρ Rρ ρ                       (2.8) 
  
where tr denotes the trace, the overbar denotes the cofactor matrix (e.g., Fedorov, 
1968), and the effective matrix,  
 

                               i
ω

= − Bρ ρ                                                                            (2.9)       

     
is defined in the frequency domain. 
  
For shear wave propagation, an analogous method to the one for longitudinal 
waves may be used. In fact, we simply have to replace the rigidity matrix R by 
the shear modulus matrix µ in the equations. Disregarding the matrix B, the 
characteristic equation for transverse waves is written as 
  
                               2 [ ] [ ] det[ ] 0,tr trΩ −Ω + =µρ µρ ρ                                         (2.10) 
  
and the two shear-wave velocities VSi are given by 
  

                               ( )
1

Re ,     1,2iSiV i
−

 
  

= Ω =                                             (2.11) 

  
The attenuations are given by 
  

                               1 Im( ) ,     1,2
Re( )

i
Si

i
Q i− Ω= − =

Ω
                                                  (2.12) 

  
Testing the theory was done by comparing the results of the three-phase Biot-
type model with C = 0 against the classical two-phase Biot-type model with one 
solid and one fluid part. The rock parameters are; φ = 0.25, C = 0, permeability κ 
= 528 mD, empirical parameters A = 2, a = 0.5 and the remaining properties from 
Table 2.1. The results are shown in Figure 2.2.  
  
The results display an excellent match between three-phase Biot-model and the 
two-phase Biot-model in the limiting case when C = 0. fc is the critical frequency 
when the fluid flow goes from unrelaxed to relaxed state, and the P- and S-
velocities undergo a transition from low to high values.    
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Solid grain bulk modulus,     Ks 
shear modulus,    µs 
density,                ρs 
average radius,    Rs 

      39    Gpa 
  39    Gpa 

  2650    kg/m3 
       50    µm     

 bulk modulus,     Kw      2.4    GPa 
Fluids density,                ρw   1000    kg/m3 
 viscosity              ηw  1.798    cP 

       
  
 

 
 
2.2.4 Application and limitations of the model 
  
The Three-phase model can be applied to inversion of well logs for model 
calibration at sonic frequencies and subsequently applied to inversion of low-
frequency surface seismic data. The model is based on a Biot-type formulation of 
the equation of motion. However, like the general Biot theory (1956), the Biot-
type three-phase model has the following assumptions and limitations: 
  
- Statistical isotropy and homogeneity of the pore and solid structures. 
- The grains in the solid part are connected. 
- The pore volume is connected. 
- The pore size distribution is concentrated around its average value. 
- Poiseuille fluid flow (laminar flow) valid for only for the low-frequency 

range. 
  

Figure 2.2: An example of velocities (a) and attenuation (b) versus frequencies. The
solid lines are obtained from two-phase Biot theory, while the points are from three-
phase Biot theory.  fc is the critical frequency. 
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Table 2.1: Material properties of the clay-bearing sandstone.
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Due to the complexity of the natural rocks and its pore-fill, Biot’s theory alone is 
not sufficient for modelling porous media. To approach the optimal accuracy of 
the model several effects should be added and taken into considerations such as 
viscodynamic effects, viscoelastic effects, pressure, and partial saturation. 
  
 
2.3 Permeability model 
  
(Absolute) permeability is a measure of the capacity of the porous medium to 
transmit fluids and hence a property of the rock, which is independent of fluid 
type. Unlike Gassmann’s theory, the Biot theory accounts for the differential 
movements of the fluid relative to the solid matrix. Therefore, an accurate 
permeability model would be required, which can link the permeability to 
common rock parameters such as clay content and porosity.  
   
However, the introduction of clay in sand sandstones has strong impact on its 
permeability. The permeability of a clay matrix is generally very low since the 
clay particle size is small (~1 µm), compared to the sand grains (~100 µm). In 
this section, an empirical permeability model is presented based on Kozeny-
Carman relation (Carman, 1961, Mavko and Nur, 1997). The permeability does 
not depend only on porosity and tortuosity, but also on clay content.   
 
  
2.3.1 Tortuosity  
 
Tortuosity is one of the dynamic parameters of flow in the rock. It is defined as 
the square of the ratio of total flow-path length to length of the sample, which 
depends on porosity and structure of the rock,  
  

                              
2

.lT
L

 =  
 

                                                                           (2.13) 

  
Based on the theory of Berryman (1980), the tortuosity parameters are expressed 
in three phase media by 
  

                              

21 12

23 23

13 13

31 31

1,     

1,

1,     

1

s

c

c

s

s

c

a r

a r

a r

a r

φ
φ
φ
φ
φ
φ
φ
φ

= +

= +

= +

= +

                                                               (2.14) 
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where aij are partial tortuosity parameters for i-phase in j-phase and rij 
characterises the geometrical features of the pores (equal to 0.5 for spheres).  
  
Carcione et al. (2000) expressed the total tortuosity as a function of partial 
tortuosity and clay content 
  

                              
21 23

1 1 C C
T a a

−= + ,                                                                 (2.15) 

  
where a21 and a23 are tortuosity parameters for sand and clay matrix, respectively. 
Equation (2.15) considers that the tortuosity of the rock can be obtained by using 
an analogy with electric circuits. It is given by a parallel connection of 
resistances, where the resistances are the tortuosity through the sand matrix, and 
the tortuosity through the clay matrix. This analogy uses the fact that increasing 
tortuosity increases the resistance to fluid flow. Figure 2.3a shows the variation 
of tortuosity with porosity and clay content based on equation (2.15). Observe, 
for instance that T → ∞ for φ → 0 and T → 1 for φ → 1, as expected from 
physical reasoning. 
 
  
2.3.2 Permeability 
  
The intergranular space displays a relationship of porosity, φ, and permeability, κ, 
which is fairly well-known experimentally, at least for grains of sub-spherical 
shape and constant grain size distribution. The Kozeny-Carman (Carman, 1961) 
relation provides a way to estimate the permeability of a porous medium in terms 
of generalised parameters such as porosity, surface area, particle size, and so 
forth. 
 
The combination of the Darcy and Poiseulle equations for the flow through a 
pipe, gives a permeability model expressed in terms of φ and grain dimension d, 
and tortuosity T,  
   

                               
3 2

,B d
T
φκ =                                                                        (2.16) 

  
where B is a geometric factor. Equation (2.16) shows the strong effects of particle 
size, d, and porosity on permeability. The tortuosity, T, is also an important factor 
that has to be taken into account. 
  
Mavko and Nur (1997) suggested the existence of a percolation porosity φp, 
below which the remaining porosity is disconnected and does not contribute to 
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flow. The effect of percolation can easily be incorporated into the model by 
replacing φ with (φ − φp) in the Kozeny-Carman relation  
  

                               
3 2( )pB d

T
φ φ

κ
−

= .                                                             (2.17) 

  
To include the effect of clay in the rock we follow Dullien (1991) who suggested 
that the Kozeny-Carman relation can still be applied for a distribution of particle 
sizes by substituting d by an effective particle size, ,d  defined by  
  

                               1
i

i i i

ii i
i

m
d f
m dd

= =
∑

∑∑
,                                                           (2.18) 

  
where ƒ is the volume fraction, i is the index for sand and clay and m is mass of 
the particle assuming the densities of clay and sand are the same. 
  
Finally, from equations (2.17) and (2.18) the permeability as function of porosity 
and clay is obtained 
 

                               

2

3( ) (1 )p p

s c

s c

B
T

d d

φ φ φ φ
κ φ φ

 
 
 
 
 
 

− − −
=

+
 

 
 
 or simplified  
 
 
 

                               
3

2

( )
,

1
p

s c

B
C CT

d d

φ φ
κ

 
 
 

−
=

− +

                                                     (2.19) 

 
 
 
where  
  

                               c

s c

C φ
φ φ

=
+

   and   1s cφ φ φ+ + =  ,                                    (2.20) 
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and φs and φc are the volume fractions for sand and clay,  respectively. Equation 
(2.19) is not restricted to any particular model of the pore space. The information 
about the pore geometry and grain sizes is contained in the parameters B, ds, dc 
and τ. This description of permeability assumes an even distribution of the clay 
particles in the elementary volume. In this sense, the description is consistent 
with the model of interpenetrating sand and clay matrices on which the three-
phase Biot-type theory is based.  
 
The geometrical factor B may vary from one rock type to another. In this study, 
the value of B is estimated as 15 by fitting the equation (2.19) with the 
experimental data for sandstones of Klimentos and McCann (1990) and using φp 
= 0.035 (Mavko et al., 1998, p 262). 
  
Figure 2.3b the permeability versus porosity and clay content, for various values 
of the clay content and porosity, respectively. In general, the permeability (and 
porosity) data from core measurements exhibit a scattered appearance, and there 
are several reasons for this (Worthington, 1991), mainly related to the core 
handling and measurement methods. This problem was also discussed in Helle et 
al. (2001). In view of this, the fit between the model with the experimental data is 
considered acceptable. Note the strong decrease in permeability due to the 
addition of a small amount of clay in pure sandstones.  
 
 
2.3.3 Partial permeability of sand and clay matrices 
  
In the three-phase Biot-type model, the fluid-sand and fluid-clay dynamic 
interactions are considered separately. Therefore, expressions for the partial 
permeabilities of sand and clay matrices have to be developed. The expression for 
permeability obtained in the previous section is the permeability, κ, for a rock of 
mixed particle size and cannot directly be used in our three-phase model. Thus, 
the conversion of κ  to partial permeabilities κ1 and κ3, corresponding to sand and 
clay matrices, respectively, is required. Following Carcione et al. (2000), the 
permeability, κ, is given by 
  
                               1 3 ,s cκ κ φ κ φ= +                                                                  (2.21) 
  
and the ratio of partial permeabilities is 
  

                              
2

3

1

c s

s c

d
d

κ φ
κ φ

   
   
   

=                                                                 (2.22) 
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Figure 2.3: Tortuosity versus porosity with different clay content (a),
and calibration of permeability model with experimental data
(Klimentos and McCann, 1990) (b). 
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Then from equations (2.21) and (2.22), the partial permeabilities can be expressed 
by (see figure 2.4) 
  

                               1 2
,

1 c
s

s

d
d

κκ

φ
  
  
   

=

+

                                                          (2.23) 

  
and 
  

                               3 2

1 s
c

c

d
d

κκ

φ
  
  
   

=

+

                                                            (2.24) 

  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Partial permeability for sand (a) and clay (b) matrix as a function of
porosity and clay content (note that κ3 → ∞ for C → 0). 
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2.4 Viscodynamic operator    
  
In a Poiseuille flow (laminar flow), energy dissipation is dominated by viscous 
drag in the boundary layer at the solid-fluid contact. In this case, the fluid front is 
parabolic and parallel to the pore wall. When the laminar flow breaks down and 
becomes turbulent, the viscous drag at the wall is less important, while the 
inertial forces in the fluid cause the flow pattern to be more irregular.  
  
Flow characteristics depend on the size of the pores and the viscous skin depth, δ, 
given by 
  

                               f

ff
η

δ
π ρ

= ,                                                                      (2.25) 

  
where ρf and ηf  are density and viscosity of the fluid, respectively. Fluid flow is 
of Poiseuille type whenever viscous skin depth is larger than the size of the pores. 
Skin depth determines the definition of the low and high frequency ranges. The 
distinction between low and high frequencies is dependent on whether the 
viscous skin depth is large or small relative to the size of the pores. The two fluid 
flow situations are illustrated in Figure 2.5. 
  
  

 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Due to the dependence of the viscous skin depth on frequency, high frequencies 
result in a low value of skin depth and the pore fluid-motion lags behind the 
motions of the solid part, corresponding to the inertia of the pore fluid. For low 

Figure 2.5: Illustration of the two different cases of fluid flow. R is the pore 
radius. 
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frequencies, the skin depth is larger and the pore fluid motion is almost in phase 
with the solid part.  
  
Following Johnson et al. (1987) the transition frequency is expressed by the 
oscillating flow change character 
  
                             

                               
1

21 1

3
23 3

,
2

,
2

f
c

f

f
c

f

f
a

f
a

φη
π ρ κ
φη

π ρ κ

=

=
                                                              (2.26) 

  
where fc1 and fc3 are critical frequencies related to the sand and clay matrix, 
respectively. 
  
The friction functions bii in the three-phase model [Appendix A (A-23)] describe 
the viscous damping due to the relative motion between the solids (sand/clay) and 
the fluid. By implementing the viscoelastic operator (or viscoelastic function) in 
the theory, the friction functions are replaced by 
  

                               
2

( )f
ii i

i
b F

η φ
ω

κ
= ,      i = 1,3,                                                (2.27) 

  
where F1 and F3 are viscodynamic functions, corresponding to the interaction 
between the sand and clay matrices with the fluid, respectively (Biot, 1962). 
Johnson et al. (1987) obtained the viscodynamic function Fi by introducing a 
dynamic tortuosity, which provides a good description of both the magnitude and 
phase of the dynamic tortuosity. Thus, substituting this tortuosity yields  
  
                               2 2 ( ),i ii ia a ix F ω→ +                                                            (2.29) 
  
where a2i

 is the static tortuosity. The viscodynamic function is of the form 
  
                               2

2
4( ) 1 ii

i
i i

iaF
x

κω
φ

= −
Λ

                                                             (2.30)  

  
with 
      
                               ,f

i
i f

x
η φ
ωκ ρ

=                                                                         (2.31) 

  
where the quantities a2i, κi , and Li  are related by  
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                               2
2 1.i ii

i

aξ κ
φ

=
Λ

                                                                          (2.32) 

  
ξi describes the shape of the pore network and is equal to 12 for a set of canted 
slabs of fluids, and is equal to 8 for a set of non-intersecting canted tubes. Li is a 
geometrical parameter with 2/Li being the surface-to-pore volume ratio of the 
pore-solid interface. In this study, ξi = 8 was used. 
  
Figure 2.6a shows a viscodynamic F versus frequency plot with real and 
imaginary parts and with different values of ξ (ξ = ξ1= ξ3) corresponding to the 
different shapes of the pore network. At low frequencies, the real part of 
viscodynamic F is equal to one, while the imaginary part of F is zero, i.e. F has 
no effect on friction term bii at low frequencies, but becomes significant at the 
high frequencies. Figure 2.6b shows the viscodynamic effect on attenuation of 
wave propagation for the whole range of frequencies for two different cases; ξ  = 
8 and ξ = 12. Here, a clean sandstone model (C = 0) is considered, where the 
other properties are the same as the example in section (2.5).  
 
The physical interpretation of the viscodynamic operator is that it describes the 
induced pore pressure gradient when a fluid flow is imposed on the porous rock, 
and it gives a better physical description of the frequency-dependent energy 
dissipation. 
 
 

 

 
 

  
 

 
 

 
 
 
 
 
 
 
 
  

Figure 2.6: The viscodynamic operators as a function of frequency (a) and
attenuation versus frequency with different values of viscodynamic factor (b).  
 

1 2 3 4 5 6 7 8

0
4
8

1 2
1 6
2 0
2 4

(b )
 W ith o u t F -fa c to r 

                  ξ  =  1 2
                  ξ  =  8

 

fc

Q s
-1

Q p
-1

L og  fre qu e ncy  (H z) 

10
00

/Q

1 2 3 4 5 6 7 8
10-5

10-4

10-3

10-2

10-1

100

101

102

imag(F)

Real(F)

 

(a)

Log Frequency (Hz) 

Vi
sc

od
yn

am
ic

 fa
ct

or
 (F

)

 ξ = 12
 ξ = 8



 Chapter2. Poro-elastic representation of shaley sandstones 
 

 

22 

2.5 Case study 
  
To illustrate the behaviour of the wave velocities and attenuation versus 
frequency and clay content, and to study the effect of permeability on the wave 
responses, the following example is given. A water-saturated shaley sandstone 
with porosity φ = 0.25 was used. Table 2.3 shows the properties of the different 
constituents. The other quantities are; empirical parameters of dry-rock moduli, A 
= 2 and a = 0.5 (the same values used in Carcione et al., 2000), and permeability 
model parameter B, equal to 15 in keeping with the calibration of permeability 
model with the experiments of Klimentos et al. (1990).  
  
Figures 2.7 show the phase velocities (a) and attenuations (b) of three 
compressional waves (P-waves) and two shear waves (S-waves) at low frequency 
(30 Hz). Figures 2.7c and 2.7d show the same at high frequency (1 MHz). At the 
low frequency, the velocities of two P-slow waves (P2 and P3) and one S-slow 
wave (S2) are zero and are high in attenuation. This observation is in good 
agreement with the physical theory. At the low frequency, there is no dynamic 
interaction between solid parts and fluid part. The wave motions of all parts 
(sand, clay, and fluid) move in the same phase in porous media, as in Gassmann’s 
theory, where no slow waves are induced. On the other hand, at the high 
frequency, the fluid is in an unrelaxed state and does not move in phase with the 
solid parts. This different movement of solids and fluid induces slow waves. This 
phenomenon is characteristic of Biot’s theory. 
 
 

Solid grain bulk modulus,      Ks 
shear modulus,     µs 
density,                 ρs 
average radius,     Rs 

     39    Gpa 
 39    Gpa 

 2650    kg/m3 
       50    µm     

Clay bulk modulus,      Kc 
shear modulus,     µc 
density,                 ρc 
average radius,     Rc 

     20    GPa 
 10    GPa 

 2650    kg/m3 
       1    µm 

Fluids bulk modulus,      Kw     2.4    GPa 
 density,                ρw 1000    kg/m3 
 viscosity              ηw 1.798    cP 

 
  
  

 

Table 2.3: Material properties of the clay-bearing sandstone (Carcione et
al., 2000). 
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Figure 2.7: The phase velocities (a) and the attenuation (b) of different wave modes
as the function of clay content at f = 30 Hz. Similarly, (c) and (d), but at f = 1 MHz.  
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Figures 2.8a and 2.8b show P-wave velocity (fast P-wave) and attenuation versus 
frequency and clay content. The velocity has a transition zone and attenuation has 
a peak (Biot peak or relaxation peak) at critical frequency fc, which separates 
relaxed state and unrelaxed state of fluid. The unrelaxed state of fluid induces 
stiffening of the pore material, thus giving a higher velocity, while a lower 
velocity range relates to the relaxation state of fluid. When clay is present in 
sandstones, there are two transition velocity zones and two Biot peaks of 
attenuation, one at critical frequency fc1, corresponding to sand matrix with fluid 
content, and another at fc3, corresponding to clay matrix with fluid content. The 
critical frequencies fci move to higher frequencies with increasing clay content. 
 
  

 
 

  
           
  

  
  
  
  
  
  
  
  
  
  

Figure 2.8: P-wave velocity (a) and its attenuation (b) versus frequency with 
different clay content. 
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Figure 2.9: S-wave velocity (a) and its attenuation (b) versus frequency with 
different clay content. 
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This phenomenon is in good agreement with the physical theory that increasing 
clay content contributes to decreased permeability, and then more energy (i.e. 
higher frequency) is required to approach an unrelaxed state. Increased clay 
content increases the value of the Biot peak and transition zone of the sand 
matrix. This is due to a smaller stiffness in the sand matrix. Figures 2.9a and 2.9b 
show S-wave velocity (fast S-wave) and its attenuation versus frequency and 
different clay content, which show the same behaviour as in the P-wave.   
 
 
2.6 Summary 
  
In this section, the three-phase Biot-type theory applied for shaley sandstones has 
been presented. In addition, the Biot dynamic effect has been improved by 
including some physical effects. i.e. 1) an empirical permeability model depend 
on porosity and clay content and based on theory and experimental data and 2) 
viscodynamic effects of the fluid in the natural rocks at a high frequency range 
when the fluid motion behaviour is no longer laminar.  
  
The three-phase Biot-type theory illustrates that three P-waves (one fast and two 
slow) and two shear waves (one fast and one slow) can be obtained. The shaley 
sandstone model characteristics show two attenuation peaks (Biot peaks) at 
different frequencies, corresponding to fluid in the sand matrix, and fluid in the 
clay matrix. At low frequencies, the fluid has enough time to achieve pressure 
equilibration (relaxed regime), therefore, there is no conversion from fast waves 
to slow waves, i.e. neither slow P- nor slow S-waves exist (Figure 2.7a and 2.7b). 
On the other hand, at high frequencies (from sonic to ultrasonic), the fluid cannot 
relax. This unrelaxed state induces the energy loss of the primary waves, i.e. the 
conversion from fast waves to slow waves (Figure2.7c and 2.7d). The slow 
waves, however, are small in amplitude compared to fast waves. In the petroleum 
industry, the application of the waves is normally focused on fast P-waves and 
fast S-waves, and the slow waves are regarded as noise or energy loss. 
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Chapter 3 
 
Viscoelastic effects 
  
  
3.1    Introduction 
  
Biot’s theory of dynamic poro-elasticity (Biot, 1962) successfully described wave 
propagation properties of synthetic porous media such as sintered glass beads. In 
natural porous media such as sandstone, Biot’s effect alone is not enough to 
describe the dissipation of the rock. The discrepancies between Biot’s theory and 
actual measurements are due to complex pore shapes, i.e. the microstructure. This 
complexity gives rise to a variety of different mechanics, which contribute to 
attenuation of different wave modes. Such rocks are called inelastic or 
viscoelastic. 
  
The inelasticity of rocks usually depends on a large number of physical 
mechanisms, which can be modelled by different micro-structural theories. These 
effects include local fluid movements (squirt flow), intergranular friction, 
capillary forces, and thermal effects. A general way to include all these 
mechanisms is to use phenomenological models to describe the rheology of the 
medium. 
  
Several models have been developed to describe various attenuation phenomena. 
It is customary to represent viscoelastic loss mechanisms by combinations of 
springs and dashpots. The Maxwell model is modelled with a spring, and a 
dashpot in series, and the Kelvin-Voigt model with a dashpot and spring in 
parallel. A series combination of a spring and a Kelvin-Voigt model gives a more 
realistic representation of viscoelastic materials. The resulting system is called 
the Zener model (Zener, 1948) or standard linear-solid. This model is 
characterised by a single relaxation peak at resonance frequency and is 
represented in Figure 3.1. The stress-strain relation of the spring is ideally elastic 
(no energy loss) following Hook’s law: σ = kε, where k is the elastic modulus of 
the spring. The dashpot represents the inelastic part with σ =ηε, where η is the 
viscosity.  
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In natural rocks, the microscopic heterogeneity of the porous medium induces a 
complex macroscopic physical behaviour sensitive to slight variations in fluid 
content or of the solid structure and the shape of the pores. Beside Biot’s theory 
(global flow), the squirt flow mechanism (local flow) is also one of the most 
important dissipation mechanisms at sonic and ultrasonic frequencies. It explains 
the energy losses due to interactions between fluid and solid components at the 
level of microstructure. Pointer et al. (2000) describe three distinct mechanisms 
of wave-induced fluid flow (see also Hudson et al., 1996); flow between cracks, 
flow within cracks, and diffusion from cracks to the background porous medium. 
These mechanisms can be incorporated into the present theory by using Zener 
models of attenuation. Stoll and Bryan (1970) show that attenuation is controlled 
by the inelasticity of the skeleton (friction at grain contacts) and by viscodynamic 
mechanisms. The latter involve local (squirt) flow and global (Biot) flow. Global 
flow is implicit in Biot’s theory and squirt flow is modelled by using a single 
relaxation mechanism based on the Zener model (Bourbié et al., 1987, p. 227; 
Dvorkin et al., 1994; Carcione, 1998). In the present study, the squirt flow 
mechanism is implemented into the three-phase Biot-type model by substituting 
the fluid-solid coupling modulus with a time-dependent relaxation function, using 
a single relaxation mechanism, based on the Zener model,  Pham et al., 2002c). 
 
Apart from the squirt flow mechanism, the complexity of natural rocks induces 
other dissipation mechanisms at different frequencies including inter-granular 
friction and thermal effects. Experimental results (e.g. Murphy 1982) have shown 
that the quality factor remains constant, i.e. there is continuous dissipation over 

ε1 

ε2 

k1

k2η 

ε 

σ 

σ 

Figure 3.1: Schematic of a spring and dashpot system whose force displacement
relation is described by the same equation as the standard linear-solid (Zener typer). 
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wide frequency ranges. Spencer et al. (1982) shows strong non-constant Q. 
Kjartansson (1979) considered a model with constant quality factor, Q, strictly 
independent of frequency. The constant-Q model is very simple mathematically, 
and is completely specified by two parameters, a reference frequency ω0 and 
quality factor Q0. Recently, Ursin and Toverud (2002) studied the seismic 
dispersion and attenuation by comparing algebraically and numerically eight 
different viscoelastic models; the power-law model, Kjartanson’s model, standard 
linear-solid model and others. The result shows that all models except the 
standard linear-solid model behave similarly in the seismic frequency range.  
 
In this study, in addition to the applied Zener model for squirt flow phenomenon, 
the constant-Q model applied for dry-rock moduli is also included in the theory 
(Pham et al., 2002c). The bulk of the remaining dissipation mechanisms, such as 
inter-granular friction and thermal losses, is modelled using the constant-Q 
model. It is assumed that the lower the frame modulus is, the lower the quality 
factor is (i.e. the higher the attenuation). Using this property a Q-factor is 
assigned to the sandstone bulk modulus, and the Q-factor associated to the shear 
modulus is obtained.   
  
    

3.2    Viscoelastic concept 
 
Viscoelastic behaviour is a time-dependent, mechanically non-instantaneous 
response of a material body to variations in applied stress deformation. Because 
the response is not instantaneous, the behaviour of the material is characterised 
by a time-dependent function. One can say that the material has memory. For a 
linear viscoelastic material the stress-strain relation can be described by 
  
                                                  
                             *σ ψ ε=                                                                              (3.1)                
  
or 
  
                             * ,ε χ σ=                                                                             (3.2) 
  

where σ is the stress, ε is the strain and ψ and χ are the relaxation and creep 
functions, respectively. The symbol ‘*’ denotes time convolution and the dot 
represents time differentiation. Transforming equations (3.1) and (3.2) to the 
frequency-domain yields 
  
                             Mσ ε=    and  .Jε σ=                                                        (3.3) 
                                      

The complex modulus and complex creep compliance, are given by 
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where ω is the angular frequency and t is the time variable. The inelastic effects 
are quantified by the quality factor and the phase velocity dispersion. The lower 
the Q factor, the larger the dissipation and the quality factor is then defined as the 
peak potential energy density divided by the loss energy density, and is given by 
  

                               ( )( ) ,
( )

r

i

MQ
M

ωω
ω

=                                                                   (3.5) 

  
where indices r and  i denote the real and imaginary parts, respectively.  

  
  
3.3    Squirt flow and the Zener model 
  
 
Viscoelasticity is introduced into Biot’s poroelastic equations for modelling a 
variety of dissipation mechanisms related to skeleton-fluid interaction. One of 
these mechanisms is the squirt-flow, by which a force applied to the area of 
contact between two grains produces a displacement of the surrounding fluid in 
and out of this area. Since the fluid is viscous, the motion is not instantaneous and 
energy dissipation occurs.   
 
As in Carcione (1998), we have modelled the squirt flow mechanisms with a 
single relaxation peak based on the Zener mechanical model (Pham et al., 2002c). 
The generalisation of the coupling modulus M in Carcione (1998) is Kav in the 
present theory, where Kav is defined as the average modulus (see Appendix A). 
The relaxation is expressed as 
 

                             ( ) 1( ) 1 1 ( ),
t

avt K e H tστψ ϕ ϕ
 
  
 
−−

 
 
 
 

= + +                                    (3.6) 

 
where H(t) denotes the Heaviside function, / 1,ε σϕ τ τ= −  and where τε and τσ 
denotes relaxation times of strain and stress, respectively.  
 
Calculation of the phase velocity and the attenuation factor requires a Fourier 
transformation of the constitutive equations to the frequency domain, implying 
the following substitution,  
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                              ( ) 1 11 ,
1av avK iK

i
ε

σ

ωτϕ
ωτ

− +→ +
+

                                                   (3.7) 

  
where the relaxation times, τε and τσ can be expressed in terms of a Q-factor, 
Q0sq, and a reference frequency, f0sq, as 
  
                              2

0sq
0sq 0sq

1 1 1
2

Q
f Qετ π

 
  

= + +                                                  (3.8) 

 
and 
 
                              2

0sq
0sq 0sq

1 1 1
2

Q
f Qστ π

 
  

= + − .                                                (3.9) 

 
Note that we do not introduce the squirt flow effect on the coupling modulus 
between clay and fluid since this is a case of shaley sandstone with primarily 
sand matrix. Moreover, it is assumed that the dynamic effect in the clay matrix is 
small due to the extremely small pores (clay particle radius, Rc ≈ 1µm).       

 
 

3.4    Constant-Q model 
  
The constant-Q model is introduced into the theory for modelling the rest of 
mechanisms such as intergranular friction, thermal effect and others. Here the 
constant-Q model is implemented by making the frame bulk and shear moduli of 
sandstone viscoelastic. 
    
The constant-Q model is based on a creep function of the form t2γ where γ << 1 
for seismic applications. This model provides a simple parameterisation of 
seismic attenuation in rocks for use in oil exploration and in seismology. By 
reducing the number of parameters, it allows an improvement of seismic 
inversion. Moreover, there is physical evidence that attenuation is almost linear 
(i.e. Q is constant) with frequency in many frequency bands. Bland (1960) and 
Kjartansson (1979) discuss a linear attenuation model with the required 
characteristics. Keller (1989) has used the constant-Q theory to model frame 
inelasticity in Biot’s theory for isotropic saturated media. He obtained a good fit 
of experimental P-wave attenuation and velocity of sediments. 
  
The relaxation function is expressed as  
  

                               0

0

2

( ) ( ),
(1 2 )

M tt H t
t

γ

ψ
γ

 
 
 

=
Γ −

                                            (3.10) 

  



 Chapter3. Viscoelastic effects 
 

 

32 

where M0 is a bulk modulus at a reference time, t0, Γ is Euler’s Gamma function. 
From equations (3.4), (3.10) and after some calculations, the complex modulus is 
obtained 
  

                              0 0
0 0

2 2

( , ) ,iiM Q M M e
γ γ

πγω ωω
ω ω
 
 
 

= =                               (3.11) 

                             
where ω0 is reference angular frequency and where πγ  is the phase angle 
between the stress and strain. Therefore, with Q determined by the ratio of real to 
imaginary parts of the complex moduli (equation 3.5), the relation between the 
stress/strain phase shift parameter, γ, and quality factor, Q, is obtained,  
  

                               11 1tan .
Q

γ
π

−  
 
 

=                                                                (3.12) 

  
In equation (3.12), it is observed that Q > 0 is equivalent to 0 < γ > 1/2.  
Attenuation is modelled by making the frame (i.e. sandstone skeleton) bulk and 
shear moduli viscoelastic, 
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−

 
 
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 
 
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→

=

                                                           (3.13) 

  
where Ksm is frame (dry) bulk modulus of sandstone which can be obtained from 
the (modified) expression of Krief et al. (1990) (eq. 2.5), and QK is the quality 
factor corresponding to the moduli of the sandstone skeleton. The lower the 
frame modulus (lower velocity) is, the lower is its Q-factor (i.e. the higher the 
attenuation) (e.g., Toksöz and Johnston, 1979; Pham et al. 2002a; see also eq. 
3.5). Based on this fact, QK is defined following (Pham et al., 2002c)  
  
                               0

0

sm
K

sm

KQ Q
K

= .                                                                     (3.14) 

  
Here, Q0 is the given loss parameter for the sand skeleton which can be obtained 
from laboratory measurement, and Ksm0 = Ksm for a reference rock with porosity 
φ0 and clay content C0 at the given pressure condition.  
  
A similar relation is used for the shear modulus: 
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where msm is frame shear modulus of sandstone can be obtained from equation 
(2.5). The corresponding Qµ-factor for the shear modulus is given by 
  
                              sm

K
sm

Q Q
Kµ
µ= .                                                                      (3.16) 

  
Note that we do not introduce the visco-elastic effect on the clay frame modulus, 
since this is a case of shaley sandstone with a primarily sand matrix.  
 
   
3.5   Discussions 
  
The limitation of the constant-Q model is that velocities go to infinity when 
frequencies go to infinity. This is physically not possible. All the frequencies of 
interest, therefore, must satisfy the condition: 
                          

                              
0

1 ln 1.
Q

ω
π ω

                                                                   (3.17) 

 
To satisfy this condition, the highest value of the frequency range of interest 
should be used as the reference frequency. In the present study, the reference 
frequency of f0 = 1 MHz was used in order to describe the viscoelastic effect in 
the frequency range of interest, i.e. from seismic frequency (10 Hz) to ultrasonic 
frequency (1 MHz).   
  
Due to the complexity of natural rocks, there are several attenuation mechanisms 
present when the waves pass though porous media (e.g. squirt flow, inter-
granular friction, and thermal effect). Using the Zener solid model and the 
constant-Q model to address these behaviours gives a synthetic model that can 
describe the viscoelastic effects in natural rocks from low to high frequencies. 
The limitations of the model are mainly with regard to the use of the constant Q-
model to describe attenuation mechanisms, which are not of viscodynamic 
nature. However, this limitation is a consequence of the absence of experimental 
data in the sonic and seismic bands. The constant-Q model could be substituted 
by a generalised Zener model (parallel or series connection of Zener elements), 
which can be used to fit a general functional behaviour of quality factor (and 
velocity dispersion). In this sense, the model is not a predicting tool. More details 
of the visco-elasticity will be discussed in chapter 4. 
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It is noted that losses due to scattering are not described by the present model, 
which is based on an effective-medium theory (i.e. the wavelength of the signal is 
much larger than the pore size). However, when laboratory measurements and 
sonic logs are used to infer the behaviour of acoustic properties at seismic 
frequencies, the frequency dependence of this property is a key factor. As 
demonstrated by White (1975), wave velocity and attenuation are substantially 
affected by the presence of partial (patchy) saturation, mainly depending on the 
size of the gas pockets (saturation), frequency and permeability. These effects are 
implicitly described by Biot-type theories, when using full-wave modelling codes 
to obtain synthetic seismograms in inhomogeneous media (chapter 6, 7). 
 
The ideal model application is that laboratory measurements and sonic logs can 
be used to infer the behaviour of acoustic properties at seismic frequencies. The 
demonstration of visco-poroelasticity is presented in the next chapter, where the 
partial saturation effect is also considered.  
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Chapter 4 
 
Partial saturation 
 
 
 
4.1     Introduction 
 
In porous media where both gas and liquid phases exist, the effect of partial 
saturation on velocity and attenuation depends on the frequency range. At low 
frequencies (seismic frequencies), the wave sees the medium as a fine-scale 
distribution of saturation, hence, the different wave-induced increments of pore 
pressure in each phase have time to diffuse and equilibrate. This is an iso-stress 
situation, and therefore the effective bulk modulus of the mixture of fluids is 
described well by the lower bound [Wood’s average (Wood, 1955); Reuss’s 
average (Reuss, 1929); Gassmann (Gassmann, 1951); Mavko and Mukerji 
(1998)]. On the other hand, at high frequencies (ultrasonic frequency), the 
differences in wave-induced pore pressure do not have time to flow and 
equilibrate among the various phases, and this state of unrelaxation induces a 
stiffening of the pore material, which increases the wave velocity considerably 
(Cadoret et al. 1995). In this case, Wood’s model is not appropriate and, in 
general, a Hill’s average is used to model the wave velocities at ultrasonic 
frequencies (laboratory frequencies). Alternatively, an approximation model of 
this case is the upper bound [Voigt’s average (Voigt, 1928)].  
 
Several investigations have been made to study the different effects on wave 
velocities and attenuation in partially saturated rocks. Murphy (1982) and 
Murphy et al. (1986) measured the acoustic wave velocities and attenuation in the 
sonic frequency band (1-10 kHz). Mavko and Mukerrji (1998) studied the bounds 
on low-frequency seismic velocities in partially saturated rocks. The experimental 
results of Yin et al. (1992) display consistent peaks in resonance attenuation at 
high water saturation. A strong dependence on the saturation history is evident, 
with the attenuation peak located at 90 % water saturation in the drainage 
experiment, and 98 % during imbibition. King et al. (2000) measured 
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compressional and shear wave velocities at the ultrasonic frequency. For 
modelling, Brie et al. (1995) suggested an empirical model for the mixture of 
fluids. No micro-structural theory, however, is able to predict the behaviour at 
intermediate frequencies. However, in the present study, an empirical model for a 
partially saturated medium was derived. The model, which may be applied for all 
frequency ranges, is based on both physical theory and experimental data.  
 
The approach to modelling the mixture of fluids in partially saturated rocks is to 
replace the collection of phases with a simple effective fluid. Here, the following 
mixing laws were applied to obtain the effective medium (Pham et al., 2002c): i) 
a modified empirical model for fluid bulk moduli of the mixture proposed by Brie 
et al. (1995), which gives the Wood modulus at low frequencies and the Voigt 
modulus at high frequencies, ii) viscosity of the mixture by Teja and Rice 
(1981a,b), iii) relative permeabilities of the mixture provided by Van Genuchten 
(1978), and iv) the density of the mixture estimated as the linear average of the 
phase densities.  
 
 
4.2    Relative permeability 
 
In a single-phase saturated medium, the (absolute) permeability does not depend 
on the fluid type and can be obtained by using Kozeny-Carman relation (see 
section 2.3). In multi-phase fluid medium, the different flowing capacities of the 
fluids interact with each other and induce a fluid-dependent flow. The relative 
permeabilities, which depend on the type of fluids and the fluid distribution are, 
therefore, defined to describe the different movements of the fluids in a partially 
saturated medium.      
 
Relative permeability is defined as the ratio of the effective permeability of a 
given fluid at a fixed saturation to the permeability at 100% saturation (absolute 
permeability). Relative permeability depends on pore size distribution, fluid type, 
saturation history (drainage or imbibition), and saturation. Van Genuchten (1978) 
has derived an empirical relative permeability model as function of saturation, 
 
                               1/ 2[1 (1 ) ]w wm m

rw we weS Sκ = − − ,                                             (4.1)            
 
                               1/ 2[1 (1 ) ]g gm m

rg ge geS Sκ = − −                                                (4.2) 
 
and  
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where Swi and Sgi are irreducible water saturation and trapped gas, respectively 
(Bear and Bachmat, 1990, p. 344). mw and mg are free factors for water and gas. 
These free factors depend on the fluid type, saturation history, and geological 
properties of the rocks, which can be obtained by fitting to laboratory 
measurements.      
 
Relative permeabilities were obtained from equations (4.1) and (4.2) where Swi = 
0.2, Sgi = 0.1, and the free parameters, mw = 1.1, mg = 1.5 were estimated by 
fitting the model to experimental data from a North Sea reservoir (Figure 4.1). 
Both permeabilities decrease for decreasing saturation of the corresponding fluid. 
In particular, there is practically no water flow below 20 % water saturation. This 
phenomenon is due to gas bubbles in the pores preventing water flow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Fitted curves of relative permeabilities using data from a 
North Sea reservoir. 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

  

1-Sgi
Swi

κrwκrg

R
el

at
iv

e 
Pe

rm
ea

bi
lit

y

Sw



Chapter4. Partial saturation 
 

 

38 

 
4.3     Mixing laws for multi-fluid model  
 
For the permeability of the mixture, a simple weighted average was used to 
introduce effective permeability of the mixture including relative permeabilities 
of the fluids,  
 
                               ( ( 1)),e rw w rg wS Sκ κ κ κ= + −                                         (4.4) 

 
where κ is the (absolute) permeability  and κe is the effective permeability of the 
gas/water mixture. 
 
For the viscosity of the mixture, the method of Teja and Rice (1981a,b) was 
applied, 
   

                               ,
wS

w
gf

g

ηη η
η
 
 
 
 

=                                                                       (4.5) 

 
where ηw and ηg are viscosities of water and gas, respectively. Following Teja 
and Rice (1981a,b) the empirical relation for the viscosity of the mixture (eq. 4.5) 
is a good approximation for most values of the saturations. Figure 4.2 shows the 
comparison of this equation (solid line) to the linear law η = Swηw+ Sgηg (dashed 
line).  The linear relationship overestimates the viscosity of the mixture. 
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Figure 4.2: Viscosities as a function of water saturation, where the
dashed line shows the linear mixing law and the solid line shows the
mixing law of Teja and Rice (1981a,b).   
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The density of the mixture is estimated as a linear average of the phase densities 
(e.g., Carcione and Gangi 2000a,b), 
   
                               ,w w g gf S Sρ ρ ρ= +                                                              (4.6) 
 
where rw, and rg are the densities of water and gas, respectively. 
 
The effect of partial saturation (gas/fluid) on the compressibility of fluids 
depends on the frequencies. At low frequencies (long wavelength), the fluid 
phases are mixed at fine scales compared to the size of the wavelength. These 
pore pressure increments can equilibrate with each other to a single average 
value. This is an iso-stress situation, and hence the effective bulk modulus of the 
mixture of fluids is described well by Wood’s average (Wood, 1955),  
 
                               1 .gw

w gf

SS
K K K

= +                                                                     (4.7) 

 
At high frequencies (short wavelength), the wave sees the fluids of the mixture as 
a coarse scale mixture. In this case, these pore pressure increments cannot 
equilibrate with each other and thus induce a stiff modulus. This is a ‘patchy’ 
situation, and therefore the effective bulk modulus of the fluid mixture with 
partially varying bulk modulus but uniform shear modulus is described exactly by 
Hill (1963). Hill shows that when all of the phases or constituents in a composite 
have the same shear modulus, m, the effective P-wave modulus, M = K + 4/3m is 
given by  
 
                               1 ,4 4 4

3 3 3

gw

sat w sat g

SS

K K Kµ µ µ− −

= +
+ + +

                                    (4.8) 

 
where Ksat-w and Ksat-g are effective bulk moduli, saturated with 100 % water and 
gas, respectively. By extension of equation (4.8), the P-wave velocity is 
expressed as 
 
                               

( ) ( ) ( )2 2 2
,1 gw

P P Psat w sat g

SS
V V Vρ ρ ρ

− −

= +                                            (4.9) 

 
where the P-wave velocity is given by VP = (M/ρ)1/2. It can be shown, however, 
that an approximation to ‘patchy’ saturation upper bound can be found by Voigt’s 
(1928) average of the fluid modulus, 
 
                               .w w g gfK K S K S= +                                                              (4.10) 
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In attempting to introduce the empirical mixing law to obtain a better fit with 
laboratory measurements and field observations, we modified the model of Brie 
et al. (1995),  
  
                               ( ) ,e

w g g gfK K K S K= − +                                                       (4.11) 
   
where ( )0.34

0 /Be f f=  is an empirical parameter, with f0B being a reference 
frequency. In this study, f0B was set equal to 1 MHz and the exponent 0.34 fits 
data from seismic to the ultrasonic band. In particular, in the sonic band the value 
is approximately [2-5] (Brie et al., 1995). Equation (4.11) gives Voigt’s mixing 
law for e = 1 and approximation of Wood’s average for e = 40. The use of the 
modified model of Brie et al., although empirical, allows us to model wave 
velocities and attenuation in the whole frequency range.  
 
Figure 4.3 shows the bulk modulus of the water/gas mixture versus water 
saturation (a) and frequency (b) based on equation (4.11). The modified model of 
Brie et al. is in good agreement with the Voigt’s and Wood’s bounds (upper and 
lower bounds). 
 
 
4.4     Case study 
 
Berea sandstone saturated with water and gas is considered. Table 4 shows the 
properties of the different constituents. The porosity is φ = 0.246 (King et al., 
2000). The other quantities are; the empirical parameters for dry-rock moduli (eq. 
2.5) A = 2.8, Fµ = 1; the percolation porosity, φp = 0.035; the geometrical factor 
in Kozeny-Carman equation, B = 15 (section 2.3); ξ1 = ξ3 = 8 describing the 
shape of the pore network implied in the viscodynamic operator (section 2.4); the 
viscoelastic parameters in Kjartansson’s equation Q0 = 60 and ω0 = 2p MHz 
(section 3.4). For partial saturation, the centre of the peak, used for squirt-flow 
modelling (section 3.3), is given by  
 
                                    (gas-filled) (water-filled)

0 0 0(1 ) ,w wsq sq sqf f S f S= − +                         (4.12) 
 
Following Dvorkin et al. (1994), we consider that, as the viscosity of the pore 
fluid decreases, the attenuation peak of squirt-flow mechanism shifts towards 
higher frequencies. We assume f0sq = 40 kHz for gas filled rocks and f0sq = 3 kHz 
for water filled rocks and Q0sq equal to 10 for both fluids (see Carcione, 1998). 
There are, however, empirical constants f0sq and Q0sq can be obtained by fitting 
the Zener model to experimental data.  
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Figure 4.3: Bulk modulus of the water/gas mixture versus water 
saturation (a) and frequency (b).   
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Table 4:  Material properties of the clay-bearing sandstone. 

Solid grain 

bulk modulus,     Ks 
shear modulus,    µs 
density,                ρs 
average radius,    Rs 

     35    Gpa 
 35    Gpa 

 2650    kg/m3 
       50    µm     

Clay 

bulk modulus,     Kc 
shear modulus,    µc 
density,                ρc 
average radius,    Rc 

     20    GPa 
 10    GPa 

 2650    kg/m3 
       1    µm 

 bulk modulus,     Kw     2.4    GPa 
 density,                ρw  1030    kg/m3 
Fluids viscosity,             ηw  1.798    cP 
 bulk modulus,     Kg   0.01    GPa 
 density,                ρg    100    Kg/m3 
 viscosity,             ηg   0.02    cP 

                  
       
             
Figures 4.4a and 4.4b compare the P- and S-wave velocities, which are predicted 
by the model with experimental data obtained by King et al. (2000). The sharp 
drop in the velocities (King’s data) is attributed to softening of cements 
(sometimes called chemical weakening), to clay swelling, and to surface effects 
when even a small amount of water is introduced. In (b), the velocities are 
represented for several frequencies, ranging from the seismic to the ultrasonic 
band. Also shown, is the P-wave velocity obtained by using Hill’s equation (4.9).  
 
Figure 4.5 shows a three-dimensional plot of P-wave velocity (a) and dissipation 
factor (attenuation) (b) versus frequencies and water saturation. The dissipation 
factor has a maximum value at the squirt-flow relaxation peak. A secondary 
maximum corresponds to the Biot peak. The losses at full water saturation are 
stronger than the losses at full gas saturation. The behaviour of attenuation agrees 
qualitatively with experimental data published by Yin et al. (1992). The relative 
permeability applied for the present model creates a slight shift in Biot peak 
towards higher frequency in partial saturation (see eq. 2.26). The critical (cross 
over) frequency for squirt flow decreases with increasing water saturation 
(increasing viscosity) which agrees with the relaxation function of squirt flow 
mechanism ωc=Kα3/η (Dvorkin et al., 1994; Batzle et al., 2001). Here K is frame 
modulus and α is crack aspect ratio. On the other hand, the critical frequency for 
Biot peak increases with increasing viscosity (see also eq. 2.26). However, for the 
magnitude of attenuation, the squirt-flow peak do not seem to show the decrease 
in attenuation at 100 % water saturation seen in Murphy (1982) and Yin et al. 
(1992). This affect is due to using the same value of Q0sq for all saturation. The 
empirical parameter Q0sq could be obtained by fitting the model with 
experimental data. However, the difficulty for analytical modelling is the lack of 
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micro-structure theory. In partial saturation, the heterogeneity of the fluids is the 
key factor for dissipation (see chapter 6, 7).  
 
The S-wave velocity and S-wave dissipation factor as functions of saturation and 
frequency are shown in Figures 4.6a and 4.6b, respectively. The S-wave velocity 
increases with frequency and, generally, with decreasing water saturation. 
Attenuation has a maximum at approximately the location of the Biot peak and 
100% water saturation. S-wave is unaffected by the squirt-flow mechanism. 
 
Figure 4.7 shows the wave velocities (a) and dissipation factors (b) and (c) versus 
water saturation with different values of clay content C for a frequency of 10 
kHz. The permeability corresponding to each value of C is indicated in the 
curves. In general, attenuation increases with increasing clay content. Following 
squirt flow theory the critical frequency should decrease with decreasing 
permeability. This effect is not observed in Figure 4.7, since we used a constant 
Q0sq for Zener model. 
 
Finally, the three-dimensional plots in Figures 4.8 and 4.9 show more clearly the 
effect of clay and saturation on the dissipation factors for the frequencies of 10 
kHz (a), 100 kHz (b) and 1 MHz (c). In the sonic range (∼10 kHz), it is observed 
that the Biot relaxation peak for high gas saturation and high clay content, and the 
squirt-flow peak at high water saturation (a). The Biot peak gradually moves 
towards higher water saturation as the frequency increases (b and c), while the 
squirt-flow peak disappears. Moreover, at higher frequencies (c) the attenuation 
reveals stronger dependency on the clay content at high water saturation. For a 
fully saturated rock (Sw = 1) at 1 MHz, i.e. at standard laboratory conditions, the 
attenuation increase monotonically with the clay content (c) in agreement with 
the experimental results of Klimentos and McCann (1990) and Best et al. (1994).  
 
The presence of clay increases the surface area, decreases the permeability and 
increases the attenuation of the slow wave (Klimentos and McCann, 1988). 
Furthermore, the presence of the slow wave constitutes an attenuation mechanism 
for the fast P wave because of mode conversion at heterogeneities. This effect is 
implicit in the computation of synthetic seismograms when using a full-wave 
modelling method (e.g., Carcione, 1998, Pham et al., 2002a,b). 
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Figure 4.4: P- and S-wave velocities predicted by the present model
compared to the experimental data of King et al. (2000) at ultrasonic
frequencies (a). The same properties in (b), but for all frequencies.
Also shown, is the P-wave velocity obtained by using Hill’s equation.
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functions of water saturation and frequency.  



Chapter4. Partial saturation 
 

 

46 

1
2

3
4

5
6

0.0

0.2
0.4

0.6
0.8

1.0 1.90

1.95

2.00

2.05

2.10
C = 0.05  φ = 0.246

V
s  (

km
/s

)

(a)

 
 

 

Log fre
quency (H

z)

S
w

Figure 4.6: The S-wave velocity (a) and dissipation factor
(b) as functions of water saturation and frequency. 

1
2

3
4

5
6

0.0

0.2
0.4

0.6
0.8

1.0 18

21

24

27

30

Biot peak

C  = 0.05  
φ = 0.246

(b)

 
 

 

10
00

/Q
s

Log fre
quency (H

z)

S
w



Chapter4. Partial saturation 47

Figure 4.7:  Wave velocities (a) and dissipation factors (b and c) versus 
water saturation for different values of the clay content C at a frequency of 
10 kHz.  
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Figure 4.8: The P-wave dissipation factor 
as function of water saturation Sw and clay 
content C for 10 kHz (a), 100 kHz (b) and 
1 MHz (c). 
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figure 4.8, but for S-wave.  
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4.5     Discussion and conclusions 
 
 
The justification for the empirical relationships for the fluid mixture is mainly 
practical, for which the background models have been developed and applied. 
The main objective is to express the physical properties and mobility of the 
composite fluid within the porous rock in response to the imposed wavefield, for 
a range of wavelengths. Due to lack of a micro-structural theory, we consider 
here the affect on the bulk properties of rock containing the mixture rather than 
the detailed flow patterns at pore scale, which are invisible to the waves 
commonly applied in field and laboratory experiments. In the present study, 
strong velocity dispersion (Figure 4.5a) obtained in the partially saturated rock is 
mainly due to the fluid modulus of the mixture (eq. 4.11; Figure 4.3).   
 
For instance, the two-phase effective permeability concept is based on the 
assumption that the transfer of momentum between the two fluid phases is 
negligible and can be used in a relation between effective fluid mobility and the 
geometrical parameters of void space (e.g., Kozeny-Carman relation). The only 
difference is that now, each of these parameters and hence the effective 
permeability is a function of saturation. The relative permeability model may not 
be valid for motion on a pore scale. In the present study the relative permeability 
model effects Biot flow (global flow), but not squirt flow (local flow).  
  
Empirical mixing laws have been developed for the mixture of fluids (gas/liquid). 
The model for partial saturation, based on physical theory and experimental 
results (e.g., Murphy et al., 1982, Yin et al., 1991), shows good agreement with 
Voigt’s and Wood’s bounds (upper and lower bound). Additionally, the visco-
elasticities of the rocks are included and modelled for the whole frequency range. 
The advantage of this theory is that the model can be applied and used for the 
whole frequency range, seismic, sonic, and ultrasonic.  
 
The model displays the behaviour of sandstones in many respects. For instance; i) 
Wave velocities increase considerably with increasing frequency (at low 
frequencies, the fluid has enough time to achieve pressure equilibration, while at 
high frequencies, the fluid cannot relax and the bulk and shear moduli are stiffer), 
ii) For a Berea sandstone, the P- wave attenuation has a maximum at 
approximately the location of the squirt-flow peak and 90 % water saturation in 
sonic frequency band (10 kHz), and iii) In general, attenuation increases with 
increasing clay content. This effect is mainly due to the moduli (stiffness) of clay 
matrix being less than the moduli of the sand matrix.  
 
The limitations of the model are considered to be mainly due to the modelling of 
the viscoelastic effects. For both the constant-Q model and the Zener model, we 
need a number of quantified input factors in order to fit a general functional 
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behaviour of quality factor and velocity dispersion versus frequency. 
Furthermore, Q-factor measurements are difficult to obtain with enough 
reliability.  
 
As mentioned before, no micro-structural theory (e.g., the Zener model used for 
squirt-flow phenomenon), however, is able to predict the exact behaviour of 
intermediate frequencies. The problem with mixed fluid phases is that velocities 
and attenuation depend not only on frequency and saturation, but also on the 
partial distribution (micro-structural property) of the fluid phases in the rocks 
(Cadoret, 1995). In chapter 6, numerical experiments in partially saturated rocks 
will be presented to study the different physical mechanisms including the fluid 
distribution effect on the wave field, and to understand and locate the position of 
the relaxation peak, related to the dynamic behaviour of the hydrocarbons in 
reservoirs. 
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Chapter 5 
 
Pressure effects 
 
 
 
5.1 Introduction 
 
 
First, I introduce some useful definitions of the different pressures considered in 
this work. Pore pressure, also known as formation pressure, is the in-situ pressure 
of the fluids in the pores. The pore pressure is equal to the hydrostatic pressure 
when the pore fluids only support the weight of the overlying pore fluids (mainly 
water). The lithostatic or confining pressure is due to the weight of overlying 
sediments, including the pore fluids. The pore pressure attains lithostatic pressure 
when fluid flow is restricted. However, fractures perpendicular to the minimum 
compressive stress direction appear for a given pore pressure, typically 70-90 % 
of confining pressure. When fracturing occurs, the fluid escapes from the pores 
and pore pressure decreases. A rock is said to be overpressured when its pore 
pressure is significantly greater than hydrostatic pressure (Figure 5.1). The 
difference between confining pressure and pore pressure is called differential 
pressure. Acoustic and transport properties of rocks generally depend on effective 
pressure, a combination of pore and confining pressure (see equation 5.3). 
Various physical processes cause anomalous pressures on an underground fluid. 
The most common causes of overpressure are compaction disequilibrium and 
cracking, i.e., oil to gas conversion (Mann and Mackenzie, 1990; Luo and 
Vasseur, 1996). 
 
The overpressured zone is a well-known problem in the drilling process. In 
general, abnormally high-pressure in a well zone gives difficulty and delay in the 
drilling process. Therefore, knowledge of pore pressure will help in planning the 
well so as to avoid the overpressured zone. In addition, the abnormally high-
pressure zone may relate to high potential hydrocarbon zone (gas zone). Thus, 
knowledge about the relation of wave velocities and attenuations corresponding 
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to pressure is an important task and a new challenge in geophysics in order to 
predict and detect the abnormal pressure zones from seismic data.  
 
Several scientists have investigated pressure effects on the wave responses. 
Christensen and Wang (1985) measured how velocities were affected by pore 
pressure and confining pressure of Berea sandstone. Berryman (1992) introduced 
the effective stress for transport properties of inhomogeneous porous rock. 
Carcione and Gangi (2000a,b) studied the effect on velocities of abnormal pore 
pressure due to compaction and gas generation, respectively. In general, non-
seismic methods to predict pore pressure are based on a relation between porosity 
or void ratio and effective stress (Bryant, 1989; Audet, 1996; Traugott, 1997; 
Holbrook et al. 1995). Indirect use of velocity information involves the 
estimation of porosity profile by using sonic-log data (Hart et al., 1995; Harrold 
et al., 1999). An MWD (measurement while drilling) technique is proposed by 
Lesso and Burgess (1986), based on mechanical drilling data [rock strength 
computed from ROP (rate of penetration), and weight on bit (DWOB) and torque 
(DTOR)] and gamma ray logs. Seismic data can be used to predict abnormal pore 
pressures in advance of drilling. In general, this prediction has been based on 
empirical models relating pore pressure to sonic and/or seismic velocity (Dutta 
and Levin, 1990; Foster and Whalen, 1966; Pennebaker, 1968; Eaton, 1976; 
Belotti and Giacca, 1978; Bilgeri and Ademeno, 1982; Keyser et al., 1991; Kan 
and Sicking, 1994; Bowers, 1995; Eaton B. A. and Eaton T. L., 1997; Sayers et 
al., 2000).    
 
Unlike previous approaches, we use a Biot-type three-phase theory, two solids 
(sand and clay) and one fluid (see chapter 2). The theory includes the effects of 
pore pressure and confining pressure. Pressure effects are introduced by using an 
effective stress law. As is well-known, at constant effective pressure the acoustic 
(or transport) properties of the rock remain constant. The effective pressure 
depends on the difference between the confining and pore pressures, the latter 
multiplied by the effective stress coefficient (Chistensen and Wang, 1985; 
Berryman G. J., 1992; Gangi and Carlson, 1996; Carcione and Gangi, 2000a,b). 
In general, this coefficient is not equal to one and, therefore, the Terzaghi 
effective pressure law (that is, the differential pressure) is not an appropriate 
quantity to describe the acoustic properties of the rock and varying pore pressure. 
However, a proper determination of the effective stress coefficients requires 
measurements of wave velocity as a function of confining and pore pressure. In 
order to estimate pore pressure from seismic data, the method requires high-
resolution velocity information, preferably obtained from seismic inversion 
techniques. Interval velocities obtained from conventional seismic processing are 
not reliable enough for accurate pore pressure prediction (Sayers et al. 2000; 
Carcione and Tinivella, 2001). The model requires first calibration with regional 
data (well information) for quantifying the rock properties, and then the use of an 
inversion technique for pore pressure prediction from seismic data (P-wave 
velocity) (Cacione et al., 2002a; Pham et al., 2002c). Laboratory measurements of 
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P-wave and S-wave velocities on cores samples may further improve the 
calibration process (Carcione and Gangi, 2000a,b). If squirt flow is the dominant 
mechanism, then we could implement the Zener model or the other models (e.g., 
power-law model; see Ursin and Toverrud, 2002), but we must know in advance 
the rock properties in order to calibrate the model with region data.    
 
The method was applied to the Tune field on the Viking Graben sedimentary 
basin of the North Sea (Carcione et al., 2002a). A high-resolution velocity map 
that reveals the sensitivity to pore pressure and fluid saturation in the Tarbert 
reservoir is obtained from 3-D pre-stack velocity by tomography and depth 
imaging. The pressure map predicted in Tabert Formation shows good agreement 
with local well data and the structural features of the Tarbert Formation and its 
known pressure compartments. 
 
 
5.2 Method 
 
As stated in previous work (Carcione and Gangi, 2000a,b), the large change in 
seismic velocity is mainly due to the fact that the dry-rock moduli are sensitive 
functions of the effective pressure, with largest changes occurring at low 
differential pressures. The major effect of porosity is implicit in the dry-rock 
moduli. Explicit changes in porosity and saturation are important but have a 
smaller influence than changes in the moduli. In fact, the variations of porosity 
for Navajo sandstone, Weber sandstone and Berea sandstone are only 1.7 %, 7 % 
and 4.5 %, respectively, for changes of the confining pressure from 0 to 100 Mpa 
(Berryman, 1992).  
 
In order to use the theory to predict pore pressure, we need to obtain an 
expression for the dry-rock moduli versus effective pressure. The calibration 
process should be based on well data, geological and laboratory data, mainly 
sonic, density data, porosity and clay content inferred from logging profiles. 
 
Let us assume a rock at depth z. The lithostatic or confining pressure pc can be 
obtained by integrating the density log (Figure 5.1), 
 

                                    , , ,

0

( ) ,
z

cp g z z dzρ= ∫                                                          (5.1) 

 
where ρ is the bulk density and g is the acceleration of gravity. Furthermore, the 
hydrostatic pore pressure is approximately given by 
                                    
                                    ,whp g zρ=                                                                      (5.2) 
 
where ρw is the density of water. 
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5.2.1  Effective stress coefficients 
 
Observations reveal that changes in velocities resulting from changes in confining 
pressure are not exactly cancelled by equivalent changes in pore pressure. 
Therefore, as a good approximation (Prasad and Manghnani, 1997), compressional 
and shear moduli depend on effective pressure, 
 
                                 e cp p np= −                                                                       (5.3) 
 
where p is the pore pressure and n is the effective stress coefficient, which can be 
different for velocities and moduli (Christensen and Wang, 1985). Note that the 
effective pressure equals the confining pressure at zero pore pressure. It is found 
that n ≈ 1 for static measurements of compressibilities (Zimmerman, 1991), while 
n is approximately linearly dependent on the differential pressure pd = pc – p in 
dynamic experiments (Gangi and Carlson, 1996; Prasad and Manghnani, 1997). 
Therefore, we assume 
 
                                 0 1 .dn n n p= −                                                                     (5.4) 
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Figure 5.1: The schematic Figure of pressures versus depth. 
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This dependence of n versus differential pressure is in good agreement with the 
experimental values corresponding to the compressional velocity obtained by 
Christensen and Wang (1985) and Prasad and Manghnani (1997). It is clear that 
to obtain n0 and n1, we need two evaluations of n at different pore pressures, 
preferably a normally pressured well and an overpressured well. Alternatively, n0 
can be assumed equal to 1, and only one evaluation is necessary in this case. If 
one well or equally pressured wells are available, the algorithm provides an 
average value for n.  
 
 
5.2.2  Dry-rock moduli as function of effective pressure 
 
As seen from equation (2.5), the (modified) model of Krief et al. (1990) can only 
describe the dependencies of bulk and shear moduli on porosity and clay content, 
but not on pressure. In fact, the dry-rock moduli are sensitive functions of the 
effective pressure. Experiments (Gangi and Carlson, 1996; Prasad and 
Manghnani, 1997) show that functional forms of the dry-rock moduli as a 
function of effective pressure: 

                         
                          ( )*( ) ( ) 1 exp ( ) / ( )eM z z p z p zα  

 = − − ,                                    (5.5) 

 
where α(z) is the maximum value of M(z) when the effective pressure is 
extremely high, i.e., the confining pressure is much higher than pore pressure. 
α(z) is therefore, assumed equal to the Hashin-Shtrikman (HS) upper bounds 
(Hashin and Shtrikman, 1963, Mavko et al. 1998, p. 106), and p*(z) is obtained 
(for each modulus) by fitting the (modified) expressions of Krief et al. (eq. 2.5),    

   

                   
*

*

( ) ( ) 1 exp( ( ) / ( ))

( ) ( ) 1 exp( ( ) / ( ))

sm e KHS

sm eHS

K z K z p z p z

z z p z p zµ

β

µ βµ

  
  

= − −

= − −
,                            (5.6) 

 
where KHS and µHS are Hashin-Shtrikman upper bounds,  β is a constant weight 
factor to account for softening of the rocks, which can be obtained by fitting 
regional data.   

 
 

5.2.3  Hashin-Shtrikman upper bounds 
 

At any given volume fraction of constituents the effective modulus will fall 
between the bounds but its precise value depends on the geometric details. The 
best bounds, defined as giving the narrowest possible range for an isotropic rock, 
are the Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman, 1963). The HS 
upper bound given by  
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= + − + −

= + − + + −

              (5.7) 

 
Note that the HS lower bound is zero, and that the Voigt bounds are (1−φ)Ks and 
(1−φ)µs, respectively. For quartz grains with clay, Ks = 39 Gpa and µs = 33 Gpa 
(Mavko et al., 1998, p.307). If the porosity limit is 0.2, the HS upper bounds for 
the bulk and shear moduli are 26 GPa and 22 GPa, compared to the Voigt upper 
bounds 31 GPa and 26 GPa, respectively. However, the HS bounds are still too 
large to model the moduli of in-situ rocks. These contain clay and residual water 
saturation, inducing a chemical weakening of the contacts between grains (Knight 
and Dvorkin, 1992; Mavko et al., 1998, p. 203). Therefore, these bounds are 
multiplied by the factor β < 1, which can be obtained by fitting regional data. 
Figure 5.2 shows the dry-rock bulk modulus of several reservoir rocks for 
different confining pressures (Zimmerman, 1991, p. 29, Table 3.1), compared to 
the HS upper bounds. The solid line represents the analytical curve. Based on 
these data we apply a constant weight factor β = 0.8 [K(pc=300MPa)/KHS ≈ 0.8 
(see Figure 5.2)] to the HS bounds to account for the softening effects (Carcione 
et al., 2002a). 
 
 
5.2.4  Gas dependencies on pressure and temperature 
 
The densities and compressibilities of oil and water are less sensitive to pressure 
and temperature than those for gas. The isothermal gas bulk modulus Kg and the 
gas compressibility cg = Kg

-1 depend on pressure and temperature. The latter can 
be calculated from the Van der Waals equation 
 
                             2( )(1 ) ,g g gp b c RTρ ρ ρ+ − =                                                   (5.8) 
 
where p is the gas pressure (pore pressure), ρg is the gas density, T is the absolute 
temperature and R is the gas constant. Moreover, a good approximation can be 
obtained using b = 0.225 Pa (m3/mole)2 = 879.9 Mpa (cm3/g)2 and c = 4.28×10-5 
m3/mole = 2.675 cm3/g (one mole of methane, CH4, corresponds to 16 g), then, 
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2
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ρ

ρ ρ
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                                 (5.9) 
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5.2.5  Pore pressure prediction procedure 
 
The method for pore pressure prediction from seismic data is that we first 
calibrate the model with the local area, where formation properties such as 
porosity, clay content, confining pressure, pore pressure and velocities are 
known. Then, using an inversion technique, we obtain the pore pressure by fitting 
the modelled P-wave velocity with seismic P-wave velocity at the target area.  
 
Ideally, a precise determination of the effective stress coefficient, n, requires 
laboratory experiments on saturated samples for different confining and pore 
pressures. However, even using those coefficients, n does not reflect the 
behaviour of the rock at the in-situ conditions, due to two main reasons. Firstly, 
laboratory measurements of wave velocity are performed at ultrasonic 
frequencies, and secondly, the in-situ stress distribution is different from the 
stress applied in the laboratory experiments. Therefore, we proceed as follows: 
 
1. The (modified) model of Krief et al. (1990) (eq. 2.5) is calibrated with 

regional area (laboratory data or well data) to quantify the empirical 
coefficients A and a of the rocks. 

 
2. We compute the exponential coefficients p* (eq. 5.6) using the dry-rock 

moduli from the (modified) expressions of Krief et al. (eq. 2.5) where A and a 
were obtained from step (1), the effective pressure pe from equation (5.3), the 
confining pressure from equation (5.1), the pore pressure from well log, HS 
upper bounds from equation (5.7) and the effective stress coefficients n = 1. 

 
3. Then, the in-situ effective stress coefficients are obtained by fitting the 

theoretical wave velocities [three-phase Biot-type model (chapters 2, 3 and 4)] 
to the sonic-log wave velocities, using the dry-rock moduli versus effective 
pressure [eq. 5.6 with p* from step (2)], and n as a fitting parameter. The 
effective stress coefficient versus pore pressure, corresponding to the same 
geological unit, is obtained by using the linear law (eq. 5.4).  

 
4. Finally, by applying three-phase Biot-type model including pressure-

dependent dry moduli, the pore pressure can be predicted at the target area 
from seismic data (seismic velocity) by using an inversion technique. Here, 
the pore pressure is obtained by fitting the modelled P-wave velocities with 
the measured seismic P-wave velocities, assuming that the target area and 
calibrated area have the same type of rocks. The pore pressure prediction 
flow-chart is shown in Figure 5.3. 
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Note that in this study, the clay-matrix moduli are simply given by the (modified) 
expressions of Krief et al. (eq. 2.5), with no explicit dependence on pressure, 
since this is the case of shaley sandstones (C < 0.5). In the case of gas, the gas 
density and its bulk modulus is calculated by Van der Waals equations (5.8) and 
(5.9).   
 
Let us perform an estimation of the error in determining *

Kp . Partial 
differentiation of *

Kp  with respect to Ksm and pe implies that the error in the 
determination of *

Kp  is  
 

                                    
**

* ,smKK
eK

e smHS

p Kpp p
P K K

 
 
 

∆∆ = +∆
−

                                     (5.10)    

 
where DKsm and Dpe are the errors corresponding to Ksm and pe, respectively. 
Consider the following example: KHS = 30 GPa, DKsm = 1 GPa and Dpe = 1 MPa. 
For *

Kp  = 15 MPa (soft rock), the error is 4.5 MPa at pe = 50 MPa, and 20 MPa at 
pe = 5 MPa, while for pK

* = 40 MPa (stiff rock), the error is 4.5 MPa at pe = 50 
MPa, and 5.1 MPa at pe = 5 MPa. Therefore, the analysis indicates that a better 
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Figure 5.2: Dry-rock bulk modulus of several reservoir rocks for different 
confining pressure compared to the HS upper bounds. The solid line 
represents the analytical curve. 
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estimation of pK
* is achieved at high effective pressures and stiff rocks, that is, 

using data from normally pressured wells. 
 
An alternative derivation of the dry-rock moduli can be obtained from laboratory 
experiments. These experiments are based on sandstone or shaley sandstone 
cores, since dry measurement in shale is practically impossible to perform. The 
bulk and shear moduli Ksm, µsm versus confining pressure can be obtained from 
laboratory measurements in dry samples. Having the experimental compressional 
and shear velocities VP

 (dry), VS
 (dry), respectively, the moduli are given 

approximately by 
 

                                    
( )

( ) ( )

( ) ( )2 2

( )2

41 ,
3

1 ,

dry dry
sm s P S

dry
sm s S

K V V

V

φ ρ

µ φ ρ

 
 
 

= − −

= −
                             (5.11) 

 
where ρs is the grain density. We recall that Ksm is the rock modulus at constant 
pore pressure, i.e. the case when the bulk modulus of the pore fluid is negligible 
compared with the dry-rock bulk modulus, as for example air at room conditions. 
 
For C < 0.5 and C > 0.5, the clay- and sand-matrix moduli are simply given by 
the (modified) expressions of Krief et al.. The effective stress coefficients can be 
measured from the laboratory experiments on wet-rock samples versus confining 
and pore pressures. In this way, the effective stress law can be obtained.  
 
In some cases, velocity information alone is not enough to distinguish between a 
velocity inversion due to overpressure or due to pore fluid and lithology, e.g., 
base-of-salt reflections (Miley, 1999, Miley and Kessinger, 1999). There are 
cases, where overpressuring is not associated with large velocity variation, as in 
smectite/illite transformations. Best et al. (1990) use AVO analysis to treat these 
cases. Modelling analysis of AVO signatures of pressure transition zones are 
given in Miley (1999) and Miley and Kessinger (1999) and Carcione (2001c). 
This type of analysis should complement the present prediction method based on 
geological information of the study area.  
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Figure 5.3: Flow chart illustrating the pore pressure prediction method 
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5.3 Case study 
 
Let us continue with the example in chapter 4. The pressure effect is now 
included in the three-phase Biot-type model. We assume the reference value of 
differential pressure is 40 Mpa (pc = 70 Mpa and p = 30 Mpa), and the 
temperature is 90 oC in Van der Waals equations (eqs. 5.8, 5.9), corresponding to 
a reservoir at 3 km depth. The dry rock moduli as a function of porosity, clay 
content, and pressure were obtained following steps 2 and 3 of the procedure 
described in section (5.2.5), while the empirical parameters are: A = 2.8 and Fm = 
1, corresponding to the example in chapter 4 (Pham et al., 2002c).  
  
Three-dimensional plots of the P-wave velocity (a) and dissipation factor (b) 
versus differential pressure - confining pressure minus pore pressure - and water 
saturation are displayed in Figure 5.4. The clay content is 0.05 (5 %) and the 
frequency is 30 Hz. The same is in Figure 5.5 but for S-wave velocity (a) and 
attenuation (b). For both P- and S-waves the velocities increase, while the 
attenuation decreases strongly with increasing differential pressure. This effect is 
mainly due to the dry-rock moduli being sensitive to effective pressure. The 
larger the differential pressure the greater is the stiffness of the rock, which leads 
to an increase in velocities and quality factors. In particular, at extremely low 
effective pressure, the rock becomes unconsolidated and the dry-rock moduli 
approach zero. The attenuation is not effected by saturation change, since this is a 
low frequency case (30 Hz).  
 
In order to demonstrate the pressure effects on wave velocities at different rock 
porosities, we consider porosities of 0.1, 0.2, 0.246, and 0.3. Pore pressure is kept 
constant at 30 Mpa, while confining pressure varies from 30 to 200 Mpa. The 
results of P-wave (a) and S-wave (b) velocities are shown in Figure 5.6. For both 
P- and S-wave, the velocities increase with decreasing porosity. The advantage of 
the model is that, unlike previous work (Carcione and Gangi, 2000a,b), the dry-
modulus upper bounds (HS) are also porosity dependent. At high porosity, the 
velocities reveal strong dependency on pressures. This behaviour is in good 
agreement with physical nature with the fact that the higher the porosity, the 
softer is the rock, inducing a more pronounced effect of pressures on the rock 
compressibility. For well-consolidated and cemented rocks, the simple eq. (5.5) 
may not be an accurate representation of the modulus around zero pressure. Here 
the model predicts zero modulus whereas the experimental data on sandstones 
reveal small but finite values (Figure 5.2). This gives trouble for low porosity 
rocks as shown in Figure 5.6 at low pd. 
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Figure 5.4: The P-wave velocity (a) and dissipation factor (b) as functions
of differential pressure and water saturation. 
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Figure 5.5: The S-wave velocity (a) and dissipation factor (b) as functions
of differential pressure and water saturation. 
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Figure 5.6: P-wave (a) and S-wave (b) velocities as functions of
differential pressure with different porosities. 
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5.4 Pore pressure prediction on the Tune field 
 
Using the pressure prediction method described in section 5.2.5, we are able to 
detect and predict the overpressured zones of the Tune field area in the Viking 
Graben sedimentary basin of the North Sea. The model is first calibrated against 
local wells and then using an inversion technique we predict pore pressure, while 
the input velocity field is determined by tomography of depth migrated gathers 
(Carcione et al., 2002a).   
 
 
5.4.1  Application and analysis on the Tune field  
 
We consider the Tune field area in the Viking Graben of the North Sea (Figure 
5.7). This basin is 170-200 km wide, and represents a fault-bounded north-
trending zone of extended crust, flanked by the mainland of western Norway and 
the Shetland platform. The area is characterised by large normal faults with north, 
north-east, and north-west orientations which define tilted blocks. Such blocks 
contain the same sequences as the wells that are used for this study. The main 
motivation for selecting this area is the fact that high overpressure compartments 
were identified by drilling, and that higher overpressure is expected in future 
wells at the down flank side towards the central Viking Graben. A detailed 
analysis of the fault sealing and pressure distribution in Tune field are given by 
Childs et al. (2001). 
 
Figure 5.8 displays a time-structure map of Top Ness, showing the pressure 
compartments enclosed by faults and the locations of three wells. Well 2 and 3 
are in the high pore pressure region with 15 Mpa overpressure and well 1 has 
almost normal (hydrostatic) pore pressure and is highly deviated. The dashed line 
indicates the location of the seismic section shown in Figure 5.9. The calibration 
well (well 1) is an exploration well drilled to a depth of 3720 m (driller's depth) 
to test the hydrocarbon potential of the Jurassic Brent Group. The well includes 
reservoir rocks of the Tarbert and Ness Formations. The Tarbert sands are the 
target units, which are considered in the present study. 
 
The 3-D marine seismic data was acquired by using a system of 6 streamers of 3 
km length with a group interval of 12.5 m and cross-line separation of 100 m. 
The shot spacing was 25 m and the sampling rate 2 ms. The conventional stacked 
section is displayed in Figure 5.9, where the locations of the wells are shown. 
Figures 5.10, 5.11, and 5.12 show pressure and formation data (porosity φ, clay 
content C, density ρ, water saturation Sw and sonic-log velocities VP and VS) for 
the Tune wells. The shear wave velocity in well 3 is obtained by using the 
empirical relation VS = − 791.75 + 0.76535VP (m/s), which was obtained by 
fitting data from near-by wells. Note that well 1 is water bearing with moderate 
pore pressures while wells 2 and 3 are gas bearing and overpressured. 
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Figure 5.7: Location of the Tune field in the Norwegian sector of the North 
Sea. 
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Figure 5.8: Time-structure map of Top Ness (base reservoir) showing the pressure
compartments in the study area. 
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Figure 5.9: Seismic section through Tune wells showing the location of the
Tarbert (Top Tarbert - Top Ness interval). The mean reservoir fluid pressures
are indicated.  The depths of interest are between Top Tarbert (green) and Top
Ness (pink). 
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Figure 5.10: Pressure and formation data (porosity φ, clay content 
C, density ρ, water saturation Sw and sonic-log velocities VP and 
VS) for the well 1 (see Figures 5.2 and 5.3 for location). 
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Figure 5.11: Pressure and formation data (porosity φ, clay content 
C, density ρ, water saturation Sw and sonic-log velocities VP and VS) 
for Tune well 2. 

3400 3450 3500 3550 3600 3650 3700 3750

0.5

1.0

1500

3000

4500

0.5

1.0

1500

3000

4500

S w
   

   
   

   
  V

el
oc

ity
 (m

/s
)

  

Vp

Vs

Sw

 

3400 3450 3500 3550 3600 3650 3700 3750
30

40

50

80

85

90

30

40

50

80

85

90
Pr

es
su

re
 (M

pa
)

 

To
p 

N
es

s

To
p 

Ta
be

rt

 

pc

p

ph

 

3400 3450 3500 3550 3600 3650 3700 3750
0.0

0.1

0.2

0.3

0.4

2.2

2.4

2.6

2.8

0.0

0.1

0.2

0.3

0.4

2.2

2.4

2.6

2.8

 φ
 C

   
   

   
   

   
  ρ

  (
g/

cm
3 )

 

ρ

C

φ

Depth (m)

 



Chapter5. Pressure effects 
 

71

 

Figure 5.12: Pressure and formation data (porosity φ, clay 
content C, density ρ, water saturation Sw and sonic-log velocities 
VP and VS) for the Tune well 3. 
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5.4.2 Velocity determination by tomography of depth migrated 
gathers 
 
Recent advances in depth migration have improved subsurface model 
determination based on reflection seismology. Subsurface imaging is linked to 
velocity, and an acceptable image can be obtained only with a highly accurate 
velocity field. It has been recognised that prestack migration is a powerful 
velocity analysis tool that yields better imaging results than poststack migration 
in complicated structures. The basic assumption underlying the velocity 
determination methods based on prestack migration is that when the velocity is 
correct, migrated data with different offsets must yield a consistent image. 
 
In order to obtain the velocity field, we use the seismic inversion algorithm 
described by Koren et al. (1998). Figure 5.13 shows the flow chart of the velocity 
analysis procedure. We start with an initial model based on the depth converted 
time model, using a layer velocity cube based on conventional stacking 
velocities, and the interpreted time-horizons from the Tune project. Line by line, 
we perform the 3-D prestack migration using the initial velocity model and an 
appropriate aperture (3 km ¥ 3 km at 3 km depth) in the 3-D cube. 
  
Through several iteration loops the model is gradually refined in velocity and 
hence depth. Each loop includes reinterpretation of the horizons in the depth 
domain, residual moveout analysis and residual moveout picks in the semblance 
volume. This is performed for each reflector of significance, starting at the seabed 
and successively stripping the layers down to the target. The tomography 
considers; 1) an initial velocity model and, 2) the errors as expressed by the 
depth-gather residual moveout and the associated 3-D residual maps. From these 
two inputs a new velocity model is derived where the layer depths and layer 
velocities are updated iteratively in order to yield flat gathers. The refined model 
is derived using a tomographic algorithm that establishes a link between 
perturbation in velocity and interface location, and traveltime errors along the 
common reflection point (CRP) rays traced across the model. CRP rays are ray 
pairs that obey Snell's law and emanate from points along the reflecting horizon, 
arriving at the surface with predefined offsets, corresponding to the offset 
locations for the migrated gathers. Each pair establishes a relationship between 
the CRP and the midpoint of the rays at the surface. The depth errors indicating 
the difference in depth of layer images and reference depth are picked on the 
migrated gather along the horizon and converted to time errors along the CRP 
rays. 
 
The equations relating the time errors to changes in the model are solved by a 
weighted least squares technique. The final model consists of seven layers, i.e., 
the seawater layer, seabed-Top Diapir (clay diapirism is a characteristic feature of 
the Tertiary throughout the area), Top Diapir-Top Balder, Top Balder-Top 



Chapter5. Pressure effects 
 

73

Cretaceous, Top Cretaceous-Base Cretaceous (Cretaceous layer), Base 
Cretaceous-Top Tarbert, and the target layer, Top Tarbert-Top Ness (Tarbert 
layer). Figure 5.14 shows the in-line (bottom) and cross-line (top) velocity 
models, intersecting the gas bearing high-pressured well 3. The velocity maps for 
Cretaceous, Base Cretaceous-Top Tarbert and Tarbert layers are shown in Figure 
5.15, where the well locations are indicated. The Cretaceous layer velocity and 
the depth to Base Cretaceous reveal a remarkable similarity, i.e. where the 
Cretaceous is deep, the velocity is high, and where the Cretaceous is shallow, the 
velocity is low, indicating that the velocity of Cretaceous is essentially governed 
by the overburden (e.g. compaction). Whereas the structural features about Base 
Cretaceous are fairly smooth the geometry at Base Cretaceous and below is more 
dramatic as also apparent from the seismic section (Figure 5.9). In the northwest 
flank, the Base Cretaceous-Top Tarbert and Tarbert layers terminate against the 
regional fault plane. Also along the most significant local fault planes the layers 
are not defined, and hence the discontinuity in the velocity maps. Structural 
features are well displayed in the velocity maps of the Base Cretaceous-Top 
Tarbert and Tarbert layers. The Base Cretaceous-Top Tarbert velocity map 
reveals, however, a fairly scattered distribution, with small patches of highs and 
lows within the main fault blocks. For the reservoir itself, as represented by the 
Tarbert velocity map, the distribution is far more coherent. In the Tarbert 
Formation at wells 2 and 3 in the North fault block, there are consistently lower 
velocities than those at well 1 in the East block. This feature is fairly constant for 
several independent velocity analyses, with a velocity increase of about 200 m/s 
across the fault separating the gas-bearing reservoir in the North block from the 
water-bearing reservoir in the East block. A high-velocity ridge separates the 
lows at well 2 and 3. Distinct low-velocity zones are also seen to the south and 
south-east that are not correlated with the depth variations. On the other hand, the 
high-velocity zones in the south-west may be related to the Tarbert dipping down 
at the western flank. Table 5.1 shows the sonic velocities and the results of seven 
independent velocity analyses obtained in the three well locations, where the 
standard deviation indicates the error in the estimation. There are many factors 
(e.g., dip, raypath bending, short-spaced velocity changes and anisotropy) that 
has impact on the accuracy of the velocity estimates (e.g., Fagin, 1998), but the 
best approach to estimate resolution is to perform the test on the data at hand, as 
shown in table 5.1. Maximum difference between mean value of sonic velocity 
and tomography velocity is ∼1.8 % at well 1. 
 
 
5.4.3  Application of the velocity model for pressure prediction 
 
In order to estimate the pressure map in the Tarbert Formation, we follow the 
procedure described in section 5.2.5. Table 5.2 shows the values of the basic 
physical quantities used to compute the theoretical velocities. Calibrating with the 
data from Tune wells we obtained the empirical parameter of Krief et al.; A = 
3.15 (Fm = 1). The three-phase Biot-type model (Pham et al., 2002c; see chapters 
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2, 3, and 4) was applied, excluding viscoelastic effect. The bulk density r = 2.4 
g/cm3 is used to estimate the confining pressure (eq. 5.1). Here, well 1 (the 
normal pressured well) was used for calibration of the n-factors. Figure 5.16 
shows the effective stress coefficients as a function of differential pressure, 
obtained for wells 1 and 2. We assume that n0 = 1, i.e., that at zero differential 
pressure the frame bulk modulus vanishes. The same assumption has been used 
for the effective stress coefficient related to the frame rigidity modulus. With this 
assumption, the model requires only well 1 for calibration and the others wells 
can be used for checking the results. Figure 5.17 shows the velocity map (bottom) 
and the overpressure map assuming Sw = 0.35 and a gas saturation Sg = 0.65 
(middel). The picture at the top represents the difference in pore pressure by 
assuming gas-bearing Tarbert (the middel picture) and water-bearing Tarbert (Sw 
=0.94 and Sg = 0.06). An overpressure of about 15 MPa is predicted for well 2, 
while slightly higher overpressure (18 MPa) is predicted for well 3. Direct 
measurements indicate overpressures of about 15 MPa (see Figure 5.10, 5.11, and 
5.12). Figure 5.17 (top) shows that the sensitivity of the model to fluid saturation  
is about 2.5 MPa. From the results in Figure 5.17 we may conclude that the three 
wells are drilled in three isolated pressure compartments. Although the pressures 
in wells 2 and 3 are similar, the apparent high velocity zone between those wells 
indicates the existence of an isolated compartment with lower pressure. A closer 
inspection of the faults in Figure 5.8 and 5.9 may support this interpretation. 
 
 

  Tomography     Well 1    Well 2     Well 3 
            1 
            2 
            3 
            4 
            5 
            6 
            7 

      4034 
      4025 
      4012 
      4004 
      3986 
      4012 
      4019 

     3883 
     3785 
     3777 
     3780 
     3797 
     3772 
     3782 

    3842 
    3825 
    3806 
    3791 
    3804 
    3803 
    3760 

      Mean       4013      3797     3804 
  St. Deviation         15        39       26  

 Sonic P-wave      3948       3735      3799 

 
 
 
 

Table 5.1: Statistics of Tarbert tomography P-wave velocities 
(m/s) at the well locations and comparison with sonic velocities. 
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Figure 5.13: Reflection tomography flow chart.  
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Figure 5.14: In-line (bottom) and cross-line (top) velocity models, intersecting 
the gas bearing high-pressured well 3. 
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Figure 5.15: Velocity maps for Top Cretaceous to Top Ness layers with
individual colour scale given in m/s. The velocity map represents the velocity
of the layer between the given reflector and that above. The target for this 
study is the Tarbert Formation. 
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Solid grain 

bulk modulus,     Ks 
shear modulus,    µs 
density,                ρs 
average radius,    Rs 

     39    Gpa 
 33    Gpa 

 2650    kg/m3 
       50    µm     

Clay 

bulk modulus,      Kc 
shear modulus,     µc 
density,                 ρc 
average radius,     Rc 

     20    GPa 
 10    GPa 

 2650    kg/m3 
       1    µm 

 bulk modulus,      Kw     2.4    GPa 
 density,                 ρw 1.798    cP 
Fluids viscosity,              ηw   0.01    GPa 
 bulk modulus,      Kg   1030    kg/m3 
 density,                 ρg    100    Kg/m3 
 viscosity,              ηg   0.02    cP 
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Figure 5:16: Effective stress coefficients as a function of differential 
pressure pd. 

Table 5.2:  Material properties of the clay-bearing sandstone. 
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Figure 5.17: Seismic velocity map (bottom), overpressure prediction (middle)
and difference in overpressure due to gas-bearing Tarbert and water-bearing
Tarbert (top). 
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5.5 Discussion and conclusions 
 
We have developed a model of the acoustic properties - wave velocity and quality 
factor - of shaley sandstone, which are not only functions of clay content, partial 
saturation, frequency, but also of pore pressure. Unlike previous theory, by 
combining the (modified) model of Krief et al. (1990) and the exponential law for 
dry rock moduli, we are able to obtain the dry bulk and shear moduli of the rock 
as functions of porosity, clay content, pressures and also of rock texture. The 
limitation in using exponential function is that the pressure prediction is less 
accurate when pd is close to zero for a well-consolidated rock (as discussed in 
section 5.3).   
 
The model reveals a strong decrease of the velocity and Q-factor with decreasing 
differential pressure (or increasing pore pressure). This effect is mainly because 
the dry-rock moduli are sensitive functions of the effective pressure. The effect of 
pressure on velocities depends also on porosity. A low porosity induces more 
stiffness of the rock, and therefore, gives rise to a smaller effect of pressure on 
the wave responses (velocities). In general, the model shows an effect of pressure 
on wave responses that has good agreement with physical theory and with 
experimental data (Christensen and Wang, 1985; Berryman, 1992).  
 
The model has been applied to the Tune field in the Viking Graben sedimentary 
basin of the North Sea. Here, the velocity obtained by careful analysis of prestack 
3-D data from the deep and complex Tarbert reservoir in the Tune field is 
sufficiently sensitive to pressure and pore fluid to perform a meaningful analysis. 
The velocity and pressure distribution complies well with the structural features 
of the target and the general geological understanding of the pressure 
compartments in the Tune field. The partial saturation model used for pressure 
prediction can conveniently be calibrated against well data, provided that a 
complete set of logging data is available for the zone of interest. The most 
important part of the prediction process is the determination of the effective stress 
coefficients and dry-rock moduli versus effective pressure, since these properties 
characterise the acoustic behaviour of the rock. The inversion method based on 
the shaley sandstone model must fix some parameters while inverting for others. 
For instance, assuming the reservoir and fluid properties (mainly, the saturation 
values), formation pressure can be obtained by inversion. Conversely, assuming 
the pore pressure, the saturation can be obtained. The latter implies that this 
method may be used in reservoir monitoring where the pressure distribution is 
known while saturation, i.e., the remaining hydrocarbon reserves, are uncertain. 
We have neglected velocity dispersion, which is not easy to take into account, 
since Q-factor measurements are difficult to obtain with enough reliability. When 
using laboratory data for the calibration, the effect of velocity dispersion can be 
significant (Pham et al., 2002c). 
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Chapter 6 
 
Numerical experiments-Velocity and 
attenuation in partially saturated rocks 
 
 
 
6.1 Introduction 
 
The primary goals of seismic exploration are the identification of the pore fluids 
and the mapping of hydrocarbon deposits. In the area of hydrocarbon reservoir 
management the recent developments in borehole acoustic measurements and 
seabed geophones make it feasible to conduct high-resolution surveys to detect 
pockets of unswept reserves, and to monitor the progress of enhanced recovery 
by gas and liquid injection. Understanding the physics of elastic waves in porous 
rocks partially filled with gas and liquid is thus important for exploring and 
exploiting hydrocarbon reservoirs. 
  
Microstructural properties of reservoir rocks and their in-situ rock conditions can 
be obtained, in principle, from seismic properties, such as travel times, amplitude 
information, and wave polarisation. In particular, although it is known from the 
early 80s that the dominating mechanisms of wave attenuation are oscillating 
flow of the viscous pore fluids and grain boundary friction (e.g., Winkler and 
Nur, 1982), the use of attenuation to characterise the rock properties is still under-
exploited. 
 
Regions of non-uniform patchy saturation occur at gas-oil and gas-water contacts 
in hydrocarbon reservoirs. Also, during production gas may come out of solution 
and create pockets of free gas. When laboratory measurements and sonic logs are 
used to infer the behaviour of acoustic properties at seismic frequencies, the 
frequency dependence of these properties is a key factor. As demonstrated by 
White (1975), wave velocity and attenuation are substantially affected by the 
presence of partial (patchy) saturation, mainly depending on the size of the gas 
pockets (saturation), frequency, permeability and porosity of the rocks. 
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Patchy saturation effects on acoustic properties have been observed by Murphy 
(1984), and Knight and Nolen-Hoecksma (1990). Cadoret at al. (1995) have 
observed the phenomenon in the laboratory in the frequency range 1-500 kHz. 
Two different saturation methods result in different fluid distributions and 
produce two different values of velocity for the same saturation. Imbibition by 
depressurisation produces a very homogeneous saturation, while drainage by 
drying produces heterogeneous saturations at high water saturation levels. In the 
latter case, the experiments show considerably higher velocities, as predicted by 
White's theory (White, 1975). The experimental results of Yin et al. (1992) 
display consistent peaks in resonance attenuation (sonic range) at high water 
saturation. A strong dependence on the saturation history is evident, with the 
attenuation peak located at 90% water saturation in the drainage experiment, and 
98% water saturation for imbibition techniques. Similar results are reported by 
Bourbié and Zinszner (1984) at 500 kHz and Cadoret et al. (1998) at 1 kHz. 
 
A number of theories have predicted the effects of fluids on attenuation and 
seismic velocities at full saturation (e.g. Biot, 1962; O'Connell and Budiansky, 
1977) while fewer theories address partial saturation (e.g. White, 1975).  
Although attenuation still remains poorly understood, and underexploited, it is 
believed by many investigators that in the seismic and sonic-frequency range (10 
Hz–20 kHz) the dominating mechanisms of wave attenuation are oscillating flow 
of the viscous pore fluid and the grain boundary friction (Winkler and Nur, 1979; 
1982). The role of pore fluid in controlling the velocity was well established in 
the low-frequency (seismic) limit by Gassmann (1951), and for ultra-sonic 
frequencies (0.5 MHz and above) by the experimental studies of Gregory (1976), 
Domenico (1977) and others. The few published results obtained in the sonic-
frequency band (1-20 kHz), e.g., by Murphy (1984) and by Cadoret et al. (1995) 
are usually in relatively good agreement with the Gassmann model. For higher 
frequencies (50 kHz and above) the velocity versus water saturation relationship 
is more complex and strongly depends on rock type and porosity (Gregory, 
1976). Heterogeneity of the rock material (Lucet and Zinszner, 1992) and fluid 
distribution (Cadoret et al., 1995; 1998; Endres and Knight, 1989, 1991) seem to 
be important factors in explaining the observed behaviour of elastic waves at 
sonic and ultrasonic frequencies.  
 
However, since appropriate analytical expressions for the velocity and attenuation 
in partially saturated rocks are not at hand we circumvent the theoretical 
difficulties by using the direct numerical approach. In the present investigation, a 
more realistic situation is considered, where an arbitrary (general) pore scale fluid 
distribution is modelled. By using computerised tomography (CT) scans (Cadoret 
et al., 1995) it is possible to visualise the fluid distribution in real rocks (Figure 
6.1). Fractal models, such as the von Kármán autocovariance function (Frankel 
and Clayton, 1986), calibrated by the CT scans, are used to model realistic fluid 
distributions. We introduce a numerical rock sample with homogeneous rock 
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properties, but with alternately uniform and patchy fluid distributions, based on a 
fractal model utilising the CT scans of Cadoret et al. (1995). From numerical 
simulations of poro-elastic wave propagation in the frequency range 10-500 kHz, 
we investigate the effect of varying the fluid distribution patterns and effective 
saturation. By analysing the recorded wave arrivals, we obtain values of P-wave 
velocity and attenuation versus effective fluid saturation that are consistent with 
published laboratory measurements (Yin et al. 1992; Cadoret et al., 1995, 1998; 
Murphy et al., 1982). Visual inspection of the numerical wavefield reveals that 
the attenuation of the primary wave can be explained by slow-wave conversion at 
the saturation heterogeneities. Furthermore, we observe that P-wave velocity and 
attenuation are sensitive to permeability in partially saturated rocks and show the 
same behaviour as predicted in White’s model (White, 1975). For comparison, 
we substitute the gas pockets with material inclusions of equivalent seismic 
contrast, but otherwise the same homogeneous permeability and porosity fully 
saturated with water. Finally, we include patches of low permeability rock 
coinciding with the gas pockets, imbedded in a high-permeability water saturated 
background. Heterogeneities in gas/fluid distribution are shown to be more 
effective in attenuating the primary wavefield than those of equivalent 
heterogeneities in rock material and permeability (Helle et al., 2002a, Pham et al., 
2002a,b).  
 
We solve the poroelastic equations with an algorithm developed by Carcione and 
Helle (1999), which uses a 4th-order Runge-Kutta time-stepping scheme and the 
staggered Fourier method for computing the spatial derivatives. The stiff part of 
the differential equations is solved with a time-splitting technique, which 
preserves the physics of the slow quasi-static wave at low frequencies (Appendix 
B).  
 
  
 



Chapter6. Numerical experiments-Velocity and attenuation 
 in partially saturated rocks 

84 

 
 
 
 
 
 
 
 
 
 

Figure 6.1: Saturation maps obtained with the Estaillades limestone sample in  
different saturation states). The pictures are introduced by using CT scan images, 
provided by Cadoret et al. (1995). 

      (e) Drying, Sw=60%                                  (f) Depressurisation, Sw=60% 

      (c) Drying, Sw=92%                                  (d) Depressurisation, Sw=92% 

      (a) Drying, Sw=95%                                  (b) Drying, Sw=96%       
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6.2 Fractals and saturation distribution 
 
Statistically, seismic heterogeneity is often characterised by the so-called von 
K rm n self-similar correlation function commonly cited in turbulence theory,  
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where Jm is a modified Bessel function of order m and Γm is the gamma function, 
r is the (spatial) lag and l is the correlation length. Following Frankel and Clayton 
(1986) we consider a specific type of von K rm n function where m = 0 and then 
equation 6.1 reduces to 
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The Fourier transform of the correlation function represents the power spectrum 
of the fluctuations of the medium. The two-dimensional power spectrum P(kr) is  
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where ( )1/ 22 2

r x zk k k= +  is the radial wave number, Λ is a normalisation constant, v 
(0 < v < 1) is a self-similarity coefficient, the fractal dimension D is given by D = 
E+1-v, where E is the Euclidean dimension. For a 2-D model (e.g. E = 2) D thus 
lies between 2.0 for very smooth fluctuations and 3.0 for very complex 
fluctuations. Here, we set D = 2 and vary the fractal correlation parameter l to 
generate models with uniform and patchy fluid distribution, using small values of 
l for uniform and larger values for patchy fluid distributions.  
 
For modelling the patchy distribution we set the correlation length l = lp 
expressed by  
 
                                 ( )1 2 3( ) exp 0.5 0.5 ,p w wl S Sγ γ γ 

 = + − +                          (6.4) 

                               
to account for the fact that patches are more pronounced at high and low values 
of saturation Sw than in the intermediate range. The factors γi are estimated from 
the CT scans, and to estimate the correlation length in the case of a uniform 
distribution l = lu, we simply determine the ratio lu/lp by comparing the 
corresponding CT images. For model used in this study, we have determined the  
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following values for the coefficients of equation (6.4): γ1 = 0.0003, γ2 = 6×10-7, γ3 
= 10 and lu/lp = 0.3.  
 
To construct the fluid distribution of a given effective water saturation Sw ∈ [0,1] 
on the 2-D numerical grid, we adopt the following procedure: Firstly, a random 
number generator assigned the value between zero and one, sequentially to each 
point. The random factor field is then transformed to wave number domain and 
filtered (multiplied) by equation (6.3) to obtain the desired spectrum, then, 
transformed back to the spatial domain, and normalised to the interval [ ]0,1P∈ . 
Secondly to obtain effective saturation values for the numerical rock, where each 
point on the mesh presents pure water or pure gas, we introduce a control number 
Ω ∈ [0,1] such that for each grid point, we assign water if P < Ω and gas if P ≥ 
Ω. For example, for 100% gas saturation (Sw = 0), Ω = 0 and for 100% water (Sw 
= 1), Ω = 1. For Ω = 0.5 we obtain Sw around 0.5, but the exact value remains to 
be determined by point-counting the grid as done for the CT scans by Cadoret 
(1995). An example of the resulting distribution of gas and water for uniform and 
patchy saturation at different saturation, Sw = 0.2 and 0.9 are shown in Figure 6.2. 
In Figure 6.2a grid size is 0.5 mm, fractal correlation length lu ≈ 0.3 mm and 
patch dimension in the range is 1-5 mm. Figure 6.2b shows the same parameters 
as in (a) but for patchy distribution, fractal correlation length lp ≈ 0.9 mm and 
patch dimension in the range is 1-12 mm. 
 
   
6.3 Phase velocity and attenuation estimation 
 
Determination of velocity and attenuation is based on the recorded wave arrivals 
at three equidistant receiver arrays as shown in Figure 6.3. While recordings from 
R1 and R3 are the main data for the analysis, the middle receiver R2 is used for 
checking the consistency. The phase velocity obtained in the numerical 
experiments is computed from the centre of gravity of |ψ|2 versus propagation 
time, where ψ is the bulk particle-velocity field (Carcione, 1996; see also 
Appendix B, B-36). More details about this calculation are given in Carcione 
(2001b, p. 145). The determination of phase velocity in terms of the location of 
the energy is justified from the fact that for isotropic media and homogeneous 
viscoelastic waves, the phase velocity is equal to the energy velocity (Carcione, 
2001b, p. 99).     
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Figure 6.2: a) Examples of uniform distribution of fluid for Sw = 0.2 (top) and Sw =
0.9 (bottom) in a 68.5×68.5 mm numerical rock sample. Water and gas are
indicated by black and white colour, respectively. The same parameters in (b), but
for patchy distribution. 
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Accurate measurement of intrinsic attenuation is a difficult task since the acoustic 
waves are strongly affected by scattering due to heterogeneity of the media. The 
method for estimation of attenuation is based on the analysis of transmissions by 
comparing the signals recorded for two different distances between the source 
and receiver. In fact, one of the most reliable techniques for obtaining the 
attenuation from the recorded signals is by comparing the spectral amplitudes at 
different frequencies. Because attenuation implies a preferential loss of the 
amplitude of a wave, the amplitude of the wave at a given frequency f in a 
distance r from the source can be expressed by (Toksöz et al., 1979): 
 
                                ( )

0( , ) ( ) ( ) ,p f rA f r S f G r e α−=                                              (6.5) 
 
where S0(f) is the source amplitude spectra, G(r) is the corresponding geometrical 
spreading  and α  is the attenuation coefficient. The ratio of spectral amplitudes 
for two different distances r1 and r3 along the wave path is therefore given by 
 

Figure 6.3: Source (S) and receiver (Ri) geometry used for
recording the transmitted wavefield. A circular region of
radius r0 surrounding the source is fully water saturated to
assure a uniform initial wavefront. 
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Note that index p denotes the (primary) fast P-wave and sometimes is written as 
p+, while p- presents for slow P-wave. It is also known that, the relation of 
attenuation coefficient and quality factor is defined 
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For a given source, the width of the frequency spectrum of the transmitted signal 
is relatively limited, so that QP can be considered independent of frequency. 
Equation (6.7) can be therefore written as a linear function of f, 
                                  

                                  1 1 1
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π= − +                                (6.8) 

 
The term ln(G1/G3) is independent of frequency, therefore the inverse quality 
factor QP

-1 can be found from the slope of the line fitted to ln(A1/A3) versus 
frequency as shown in Figure 6.5. The seismograms of Figure 6.4 show examples 
of recorded P-waves arrival in three receiver locations R1, R2, and R3 for 250 kHz 
and 500 kHz. 
 
Note that this spectral comparison techniques requires a signal as uncontaminated 
as possible by other arrivals. For slightly attenuating materials, the spectral ratio 
method is inaccurate, since the slope of the regression line is too low. Therefore, 
we carefully picked the window time of the signals as uncontaminated by noise 
as possible, before transforming to frequency domain for ratio spectral analysis.         
           
In the present study, we estimated velocity and attenuation by estimating the 
travel time of the bulk particle velocity-field, but we also made some tests by 
analysing wave-induced bulk pressure. The results show are very similar. In order 
to obtain optimal results, the velocity and attenuation were estimated by 
averaging the velocities and attenuation obtained at the set of receivers R1, R3 
over five different directions q (see Figure 6.3).   
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Figure 6.4: Examples of recorded fast P-wave (P+) arrivals in the
three receiver locations R1, R2 and R3 (Figure 6.3) for 250 kHz and
500 kHz. The slow P-wave (P-) recorded in R1 is the dominating
event. Rock is fully water saturated (Sw = 1). 
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Figure 6.5: Examples of amplitude spectra of the 250 kHz fast P-wave
arrivals in the receiver locations R1 and R3 (a) and the corresponding spectral
ratio (b) for estimating the attenuation. 
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6.4 Wave simulation and analysis of the wavefields 
 
For analysis of the wavefields, the propagation of wave-induced pressure is 
normally presented, since the pressure is related to energy loss to the medium 
(e.g., Mavko et al., 1998, p. 204). By using 2-D poro-elastic model for 
simulation, the wavefield is obtained in terms of the stress components of the 
solid (τxx, τ zz, τ xz) and the fluid pressure (pf). Therefore, we have to convert the 
component stresses to the total stress (or bulk pressure). 
 
Following Ben-Menahem and Singh (1981) we write the stress in the form of a 
tensor and determine the principle directions by 
 

                                 1

2

0
,

0
xx xz

xz zz

λτ τ
λτ τ

  
  

   
⇒                                                      (6.9) 

 
where λ1 and λ2 are eigenvalues, which are the roots of  equation 
 
                                 0Det λ  − =Iτ                                                               (6.10) 
 
The total stress τt is also known as the isotropic part of the tensor, given by 
 

                                 ( )1 2
1 ,
2tτ λ λ= +                                                               (6.11) 

 
where the total stress is defined as a weighted sum of solid and fluid pressure 
(Biot, 1962) 
 
                                 .t s fp pτ φ= +                                                                 (6.12) 
 
 
6.4.1 Wave responses in partially saturated rocks   
 
The numerical rock sample is a homogeneous, isotropic Berea-sandstone with a 
porosity of 24.6 % and permeability of 550 mD (King et al., 2000), partially 
filled with water and gas. The table 6.1 shows the properties of the different 
constituents. The numerical simulations were carried out following the procedure 
explained in section 6.2. Table 6.2 shows the quantified properties of water and 
gas saturated rocks. Because of the wave attenuation, it is impossible to keep the 
same mesh length for measurements in difference frequencies. Therefore, four 
samples with different sizes were considered for experiments with varying 
frequencies from 10 kHz to 500 kHz. The table 6.3 shows the properties of  
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different models. In the high frequency cases (250 and 500 kHz), we consider a 
small block size, ∆x = 0.5 mm to avoid the numerical error, while at 10 kHz, we 
choose ∆x = 2 mm in order to reduce the run time of simulation. The source is a 
Ricker-type wavelet applied to the solid skeleton and the fluid phase (a bulk 
source without shear components). A circular region of radius r0 (Figure 6.3) 
surrounding the source is fully water saturated to assure a uniform initial 
wavefront. Since the source is radially symmetric and the matrix is homogeneous 
and isotropic, no S-waves energy is generated. The wavefield is computed with a 
time step ∆t varying from 62 to 444 ns within the limits of numerical stability for 
the grid size used. nt denotes the number of times step used for simulation. 
Absorbing boundaries of width, na points have been applied at all edges, using a 
simple exponential damper to prevent wave-field wraparound due to Fourier 
transformation.  
 
 

      Solid  
bulk modulus,       Ks 
shear modulus,      µs 
density,                 ρs 

     35    Gpa 
 35    Gpa 

 2650    kg/m3 

      Matrix 

bulk modulus,       Km 
shear modulus,      µm 

porosity,                f 
permeability,         k 
tortuosity,              T 

   9.25   Gpa 
   9.25   Gpa 
 0.246 
    550   mD 
     2.5 

      Water 
bulk modulus,       Kw 
density,                 ρw 
viscosity,              ηw 

    2.4    Gpa 
 1000    kg/m3 
    1.0    cP 

      Gas 
bulk modulus,       Kg 
density,                 ρg 
viscosity,              ηg 

  0.01    Gpa 
   100    Kg/m3 
  0.02    cP 

 
 
 
 

         Water-filled         Gas-filled 
   r          2244     kg/m3       2023    kg/m3 
  VP

+(0)          3418     m/s       3268    m/s 
  V P

+(•)          3434     m/s       3275    m/s 
  V P

−(0)              44     m/s           23    m/s 
  V P

−(•)            813     m/s         195    m/s 
  fpeak(P+)         27.79     kHz        5.56    kHz 

 
 

Table 6.1: Material properties. 

Table 6.2: Quantified properties of water and gas saturated media 
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    f 
(kHz) 

∆x = ∆z 
 (mm)  

   nx, nz na  ∆t 
(ns) 

   nt    r0    R1    R2    R3 

 500 
 250 
 125 
 100 
  75 
  50 
  10 

   0.5 
   0.5 
     1 
     1 
     1 
     1 
     2 

   198 
   198 
   208 
   208 
   420 
   420 
495, 840 

 30 
 30 
 30 
 30 
 60 
 60 
120 

 62 
 62 
124 
124 
163 
163 
444 

 500 
 500 
 550 
 550 
 850 
 850 
1800 

  23 
  23 
  30 
  30 
  60 
  60 
 150 

  28 
  28 
  32 
  32 
  64 
  64  
 152 

  68 
  68 
  70 
  70 
 172 
 142 
 280 

 108 
 108 
 108 
 108 
 220 
 220 
 410 

 
 
 
 
Receivers are located in a fan shaped distribution along five rays, centred at the 
source (Figure 6.3), distances r1, r2, and r3 given in terms of grid points in table 
6.3. 
 
Comparison of the wavefields (bulk and fluid pressure) after 300 time steps for 
the uniform and the patchy model, with Sw = 0.9 and f = 500 kHz, are shown in 
Figure 6.6. We identify the primary P-wave front at the top edge of the model and 
the dominant slow-wave front encircling the source location. In the uniform 
model, we see cascades of small-scale events displaying the character of 
scattering diffractions. In the patchy model, we identify the majority of these 
diffracting events as slow waves generated when the primary P-wave front 
intersects the fluid discontinuities. The latter is well expressed by the details 
displayed in Figure 6.6c (right) where the primary P-wave is seen to excite slow 
waves when intersecting the gas pockets, leaving a cascade of slow waves in its 
tail. Multiple scattering within the gas pockets also constitute important events 
affecting the primary wavefield as discussed in more detail by Carcione et al. 
(2002b). Significant events identified as mode conversion from slow to fast P-
waves can also be seen (Figure 6.6c, left). Snapshots at the same instant and with 
the same models, but for f = 250 kHz, are shown in Figure 6.7. Here, the above 
features are essentially repeated but with twice the wavelength of the former 
simulation. Moreover, the primary wavefront has travelled a shorter distant 
during the same time interval as it is apparent in the micro-seismograms of Figure 
6.4.  
 
The velocity and attenuation estimated as a function of saturation, for a range of 
frequencies, are shown in Figures 6.8 and 6.9, respectively. In general, the 
velocities for the patchy models are significantly higher than those for the 
uniform models, in qualitative agreement with White’s theory (Carcione et al., 
2002b). For the lower frequencies range, the values of P-wave velocity are  
 
 

Table 6.3: Models desired for numerical experiments, corresponding to different 
frequencies from 10 khz to 500 khz. 
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Figure 6.6: Snapshots (68.5×68.5 mm) after 300 time-steps (18.6 µs) 
showing total bulk pressure τ (left) and fluid pressure p (right) for uniform 
(a) and patchy fluid distribution (b).  Sw = 0.9, f = 500 kHz. Details of fast 
and slow wave conversions at the gas pockets are shown in (c).  

(a) 

 
(c) 

P+ 

P- 

 (b) 
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Figure 6.7: Same properties as in Figure 6.6, but for frequency f = 250
kHz.  

(a) 

(b) 
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Figure 6.8: Vp versus Sw data as a function of frequency determined from
the numerical simulation in uniform (a) and patchy models (b). The
models of Gassmann (1951) and the modified Brie et al. (Pham et al., 
2002c) and the data of King et al. (2000) are shown for comparison. 
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Figure 6.9: QP
-1 versus Sw data as a function of frequency determined from 

the numerical simulation in uniform (a) and patchy models (b).   
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slightly above the lower bound (Gassmann; Reuss’s average). For the high 
frequencies, the velocity reaches Hill’s average. The modified model of Brie et 
al. (1995) (eq. 4.11) is also plotted for comparison. In general, behaviour of VP 
versus Sw is in fair agreement with the published laboratory data. The initial 
decline in VP at low Sw for all frequencies in the case of uniform saturation, 
agrees with the results in Cadoret et al. (1995). The opposite tendency for patchy 
saturation at ultrasonic frequencies is also consistent with the observation of 
Cadoret et al. for Estaillades limestone. The result at 500 kHz in the patchy case 
seem to be closest to the Berea sandstone data of King et al. (2000) and the small 
mismatch can in general be attributed to the higher frequencies (500 - 700 kHz) 
applied by King et al.. 
 
The results of P-wave attenuation display the characteristic features of published 
experimental data (e.g., Yin et al., 1992; Murphy, 1982; Cadoret et al. 1998) with 
low attenuation when the rock is fully saturated with gas or water, and higher 
attenuation at intermediate values of Sw, and with a peak attenuation when 
approaching 100% water saturation. In general, QP

-1 in the uniform models is 
higher than that of the patchy saturation model by a factor of nearly two. The 
reason for the latter becomes obvious when comparing the different levels of 
slow-wave intensity apparent from the snapshots in Figures 6.6 and 6.7. Since the 
quasi-static slow waves dissipate over a much shorter distance than the fast 
waves (Figure 6.10) and since the slow-waves extract energy from the primary 
wavefield, this mode conversion constitutes an efficient loss mechanism. 
Apparently, the more secondary slow waves are generated the greater is the loss 
of primary P-wave energy. Since the wavelength of slow waves is much smaller 
(1-15 %) than for the fast waves (1 mm and 7 mm at 500 kHz, 4 mm and 340 mm 
at 10 kHz), small-scale heterogeneities, far below the wavelength of the fast 
wave, may be equally important in the loss of the primary wavefield. The 
population density of saturation heterogeneities thus seems to be the key factor in 
attenuating the primary wavefield. 
 
As well-known from published laboratory data, attenuation is strongly dependent 
on water saturation Sw and frequency f.  A consistent feature apparent from Figure 
6.9 is the shift in the attenuation peaks towards higher Sw with decreasing f.  
While the 500 kHz wave in the uniform model has its peak attenuation for Sw = 
0.6, the 10 kHz has its attenuation peak at Sw = 0.98. Maximum attenuation occurs 
for f ∼ [50-100] kHz at Sw ≈ 0.95. Apparently, a resonance phenomenon exists 
around 100 kHz as shown by the three snapshots of fluid pressure shown in 
Figure 6.11. Here the small-scale pressure perturbations in the tail of the primary 
wavefront are insignificant at Sw = 0.6 but increase to a high intensity and 
amplitude at Sw = 0.9, indicating remarkably strong pressure variations (and fluid 
flow) at a scale much smaller than the wavelength of the primary wavefield. 
Experimentally, such peaks in attenuation are frequently observed. These include 
peaks in attenuation versus permeability (Klimentos and McCann, 1990; Akbar et 
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al., 1993), versus frequency and viscosity (Murphy et al., 1986; Vo-thang, 1990), 
versus porosity (Ogushwitz, 1985) and versus saturation (Winkler, 1979; 
Murphy, 1982; Yin et al., 1992; Cadoret et al., 1998). Following Carcione et al. 
(2002b), the relaxation peak (also called critical saturation) is given 
 

                                       2
1

3

2

2
1 1 ,E

wc
KS
fa

κ
πη

−
 
  
 

= − +                                         (6.13) 

 
where a1 is the radius of spherical gas pocket and is constant, η2 is viscosity of 
water. κ is the permeability and KE2 is the effective modulus (more details in 
chapter 7). In general, the numerical results shown in Figure 6.9 are in good 
agreement with critical saturation (eq. 6.13). The higher the frequency f, the 
lower is the critical saturation. Also, the uniform fluid distribution (smaller a1) 
gives higher value of critical saturation than in case of patchy distribution.      
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Figure 6.10: Slow wave attenuated during travel time, recorded at 
different distance. 
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Figure 6.11: Perspective view of low-frequency (100 kHz) snapshots 
(14.7×14.7 cm) at 300 time steps (37.2 µs) showing the fluid pressure 
p wavefield for uniform fluid distribution with saturation, Sw = 0.6, 0.9 
and 1.0.    
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Figure 6.12 shows velocity and attenuation as a function of Sw and permeability. 
Here, we fix the frequency at 100 kHz and vary the permeability. The results 
show a strong response in velocity and attenuation related to permeability in 
partially saturated rocks, while in fully saturated rocks the permeability 
sensitivity is insignificant. On increasing the permeability from zero to 550 mD 
the velocity decreases, while the attenuation increases. The physical explanation 
is that with increasing permeability the fluid dynamics becomes dominant and the 
intensity of diffusive slow wave generation from fast P-wave increases, thus 
contributing more velocity dispersion and higher dissipation of the wave field. 
Moreover, with an increase in permeability, the attenuation peak (relaxation 
peak) seems to move toward higher water saturation, which is in good agreement 
with the critical saturation (eq. 6.13). Following Marko et al. (1998, p. 207) the 
critical fluid-diffusion relaxation-scale is proportional to the square root of the 
ratio of permeability to frequency. More details of the relaxation peaks 
corresponding to saturation, frequency, permeability and heterogeneity in 
partially saturated rocks will be discussed in chapter 7, where we compare the 
numerical results based on Biot’s theory with the model of White (1975).  
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-1 (b) versus Sw with different values of permeability 

determined from the numerical simulation at 100 khz 
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6.4.2 Heterogeneities in rock material versus fluid distribution 
 
Heterogeneity of the rock material has also been an important factor in explaining 
the observed behaviour of elastic waves in rocks. Blair (1990) compared 
experimental attenuation measured in two frequency ranges  (1-150 kHz and 1-50 
kHz) on a dry granite block and concluded that grain clusters of the size (∼10 
mm) comparable to the wavelength rather than grains (∼1 mm) themselves were 
responsible for the large ultrasonic attenuation. Supported by X-ray scans of the 
rock samples Lucet and Zinszner (1992) show similar results from sonic and 
ultrasonic laboratory data in saturated limestone, containing significant material 
heterogeneities.  On the other hand, sandstone samples with more smoothly 
varying rock properties exhibit in general less ultrasonic attenuation. The 
proposed mechanism for the latter was the increased scattering (diffraction) of the 
waves when the wavelength is comparable with the size of heterogeneities. In the 
experiment shown in Figures 6.13 and 6.14 we investigate this phenomenon by 
substituting the gas with inclusions of low-velocity grain material (grain bulk 
moduli, Ki = µi = 24.4 GPa embedded in a background of 35 GPa) such that P-
wave impedance contrasts are approximately the same as in case of gas 
inclusions. Here we keep the porosity unchanged. The fractal distributions are 
identical with those of the corresponding gas-fluid models (Figure 6.2) and the 
rock is fully saturated with water. 
 
We display the results for 100 kHz and 500 kHz and compare them with the 
corresponding models containing gas inclusions. Firstly, in the case of material 
inclusions there is minor velocity dispersion and negligible response to the patch 
size, compared to those of gas inclusions (Figure 6.13). Note that Si = 1 presents 
for low-velocity (soft) grain material (or for gas saturated rock). For attenuation 
(Figure 6.14), on the other hand, we find a significant response both to frequency 
and patch size. In the patchy model, the relaxation peaks for material and gas 
inclusions coincide at 500kHz. For the magnitude of attenuation, the effects of 
patch size is opposite: While small gas patches (uniform model) favour high 
attenuation, the larger patch size (patchy model) seems more favourable in case 
of material inclusions, in particular at 500 kHz when the wavelength of the 
primary wave (λ ∼ 5 mm) coincides with the dominant patch size (Figure 6.2b). 
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Figure 6.13: P-wave velocity versus gas or material inclusion Si determined from the
numerical simulation in uniform (a) and patchy models (b).  
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Figure 6.14: P-wave attenuation versus gas or material inclusion Si determined from
the numerical simulation in uniform (a) and patchy models (b).   
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Heterogeneity in permeability is a related problem. We have shown (Figure 6.12) 
that in a fully saturated rock (gas or water) the permeability has minor effects on 
the wavefield. On the other hand, by introducing a small fraction of gas in water-
saturated rocks, the permeability becomes a key parameter. Motivated by the 
observation of patchy distribution of permeability apparent from cores and well 
logs (Helle et al., 2001), we introduce the following model: The background 
model is the porous rock (Table 6.1) with an effective water saturation Sw = 0.9 
where the water/gas mixture is distributed according to the uniform model. 
Super-imposed on the uniform fluid heterogeneities we introduce the patchy 
model for permeability, using the binary values of 2 mD and 2000 mD, 
respectively, to cover the range of effective permeability in a real reservoir. This 
experiment mimics a realistic situation where the rock contains a small fraction of 
gas (10 %) uniformly distributed throughout the matrix at a fine scale, but where 
patches of calcite cemented grains control the effective permeability at a coarser 
scale. Starting with a model of homogeneous permeability of 2 mD, we gradually 
add permeability patches of 2000 mD until the rock attains a homogeneous 
permeability of 2000 mD. The resulting velocity-attenuation pairs obtained from 
the poro-elastic simulation are shown in Figure 6.15. For 100 kHz, there is a 
strong response in velocity and attenuation due to the permeability patches, as 
may be expected from the results shown in Figure 6.12 where the response to 
permeability is at its maximum around Sw = 0.9. The response is comparable in 
magnitude to the case of partial saturation.  For higher frequencies (500 kHz), the 
response is weak with a slow monotonic increase in velocity and attenuation with 
increasing effective permeability. 
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-1 (b) versus scaled
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The snapshots of the fluid pressure for the three alternative inclusions (Figure 
6.16) reveal that slow-waves are generated at the heterogeneities in all cases, but 
to varying degrees. Slow-wave generation thus seems to be an important factor 
for any type of heterogeneity in a fluid-filled porous rock, and is particularly 
effective in the presence of gas. Gas inclusions are the most effective slow-wave 
exciters whereas material inclusions in the case of full water saturation are less 
efficient.  Effects of permeability patches are of great practical significance and 
therefore, deserve a more detailed evaluation and discussion. However, from the 
simple experiments above, we conclude that patches in the permeability give a 
strong response in the lower end of the ultrasonic band, and probably also at 
sonic frequencies. 
 
 
 

Gas Rock Permeability 

Figure 6.16:  Snapshots (68.5×68.5 mm) after 300 time-steps (18.6 µs) of the fluid
pressure p for patchy fluid/gas model for Sg = 0.1 (left), the equivalent concentration
and same distribution of solid inclusions (middle) and permeability inclusions (right)
in a fully water saturated rock.  f = 500 kHz. Bottom pictures show details of slow
wave conversion at the inclusion patches. 
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6.5 Conclusions  
 
Seismic wave propagation in porous rocks depends not only on the degree of 
saturation but also in the distribution of the fluid phase at various scales. In the 
present study, we have applied a numerical solution of Biot’s poro-elastic 
differential equation to simulate the wavefield in a porous rock partially saturated 
with water and gas. Two fractal distributions of the fluid are designed to match 
published laboratory experiments; uniform distribution of small-scale patches 
corresponding to variation of saturation by depressurisation, and the large-scale 
patches characteristic for drainage by drying. We record and analyse the 
transmitted wave with respect to P-wave velocity and attenuation in the 
frequency range 10-500 kHz as a function of effective partial saturation.  
 
Peaks in attenuation versus saturation are linked with a crossover frequency, from 
relaxed to unrelaxed modes, determined by the hydraulic properties of the host 
rock, the properties of viscous fluids and the fluid distribution within the rock 
matrix. The observed critical saturation from the poro-elastic simulation is in 
qualitative agreement with White’s theory (more details in chapter 7) and 
equivalent to the published observations of attenuation peaks as function of 
viscosity, permeability and porosity (e.g., Klimentos and McCann, 1990; Murphy 
et al., 1986; Ogushwitz, 1985; Carcione et al., 2002b).  
 
The fluid distribution plays a central role in both P-wave velocity and attenuation 
in partially fluid/gas saturated rocks. In general, VP and QP factor in case of 
uniform distribution are lower than in case of patchy distribution, which is in 
agreement with published experimental data (e.g. Cadoret, 1995). 
 
We have shown that the conversion of fast P-wave energy, into dissipating slow 
P-waves at heterogeneities in the fluid and rock properties, is the main 
mechanism for the observed P-wave attenuation. Inclusions of gas are far more 
efficient slow wave exciters than inclusions of rock material, and hence, more 
attenuation is observed for gas inclusions than for the equivalent inclusions of 
rock material.  
 
Since a patchy distribution of permeability represents an important practical 
problem, we have included a limited study in the present work. With a small 
portion of gas in the pore fill, the wave response becomes very sensitive to 
permeability and to the permeability distribution. The most interesting result is 
that both P-wave velocity and its attenuation are sensitive to permeability in 
partially fluid/gas saturated rocks, while they are not sensitive in the case of full 
saturation. This may increase the opportunities for reservoir monitoring and 
detection of hydrocarbons in gas/condensate reservoirs from seismic, since the 
permeability is directly related to the mobility of hydrocarbon in reservoir.       
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Chapter 7 
 
Comparison of White’s model with numerical 
experiments in partially saturated rocks 
 
 
 
7.1 Introduction 
 
In the previous chapter, I have presented numerical experiments to study the 
effect of partial saturation on P-wave velocity and attenuation in typical reservoir 
rocks. In this chapter, we compare these poro-elastic numerical experiments with 
White’s model (White, 1975) in order to better understand and evaluate the 
behaviour of acoustic properties (P-wave velocities and attenuation) in partially 
saturated rocks. 
 
White's model describes wave velocity and attenuation as a function of 
frequency, permeability and porosity, among other parameters. Attenuation and 
velocity dispersion is caused by fluid flow between the water phase and the gas 
pockets, which have different pore pressures. The critical fluid-diffusion 
relaxation scale is proportional to the square root of the ratio of permeability to 
frequency (e.g., Mavko et al., 1998, p. 207).  
 
White’s model considers spherical gas pockets located at the centre of a cubic 
array saturated with liquid. For simplicity in the calculations, White considers 
two concentric spheres, where the volume of the outer sphere is the same as the 
volume of the elementary cube. The theory provides an average of the bulk 
modulus for a single gas pocket, without taking into account the interactions 
between gas pockets (main effect) and (Biot) global flow (i.e., no velocity 
dispersion in fully saturated rock). Dutta and Odé (1979) rederived White’s 
model using Biot’s theory. Dutta and Seriff (1979) point out some corrections in 
White’s equation, regarding the use of the P-wave modulus, instead of the bulk 
modulus (see also Mavko et al., 1998, p.208). Gist (1994) has successfully used 
White’s model to fit ultrasonic velocities obtained from saturations established 
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using drainage techniques. He uses saturation-dependent moduli as input to 
White’s model instead of the dry-rock moduli. The predicted velocities, 
considering local fluid flow, are higher than the velocities predicted by White’s 
model. Recently, Johnson (2001) developed a generalisation of White’s model 
for patches of arbitrary shape. This model has two geometrical parameters, 
besides the usual parameters of Biot’s theory: the specific surface area and the 
size of the patches.  
 
The numerical simulation method is the same as in chapter 6. Use of numerical 
simulations, based on the full-wave solution of the poro-elastic equations, can be 
useful to study the physics of wave propagation in partially saturated rocks. 
Although White's model is an idealised representation of patchy saturation, its 
predictions are qualitatively correct, and serve as a reference theoretical 
framework. In this sense, it is useful to compare the results of White's model to 
numerical simulations based on Biot's theory of poro-elasticity. We should, 
however, consider that the theory and the modelling code have the same 
theoretical basis (Biot's theory) [although White's model does not take into 
account the interaction between gas pockets and (Biot) global flow)]. This 
investigation can be the basis for more realistic analyses, where an arbitrary 
(general) pore-scale fluid-distribution is considered. By using computerised 
tomography (CT) scans it is possible to visualize the fluid distribution in real 
rocks (Cadoret et al., 1995). Fractal models, such as the von K rm n 
autocovariance function, calibrated by the CT scans, can be used to model 
realistic fluid distributions (chapter 6).  
 
P-wave and S-wave velocities can be higher in partially saturated rocks than in 
dry rocks, but in some cases, they are lower. As predicted by White's model, this 
behaviour depends on frequency, viscosity and permeability. It is therefore 
important to investigate the sensitivity of wave velocity and attenuation to pore-
fluid distribution. This is the basis for direct hydrocarbon detection and enhanced 
oil recovery and monitoring, since techniques such as ‘bright spot’ and AVO 
analyses make use of those physical properties. The modelling methodology used 
in the present study constitutes a powerful computational tool to investigate the 
physics of wave propagation in porous rocks, and, in some cases, can be used as 
an alternative method to laboratory experiments. 
 
 
7.2 White’s model for partial saturation 
 
White (1975) has assumed spherical gas pockets much larger that the grains but 
much smaller than the wavelength. He developed the theory for a gas-filled 
sphere of porous medium of radius a1 located inside a water-filled cube of porous 
medium. For simplicity in the calculations, White considers an outer sphere of 
radius a2 (a2 > a1), instead of a cube. Thus, the system consists of two concentric 
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spheres, where the volume of the outer sphere is the same as the volume of the 
original cube. In 3-D space, the outer radius is 1/3

2 /(4 / 3)a x π= , where x is the 
size of the cube. In 2-D space, the outer radius is 2 / ,a x π=  where x is the size 
of the square. The distance between pockets is x. Let us denote the saturation of 
gas and water (brine) by S1(Sg) and S2(Sw), respectively, such that S1 + S2 = 1. 
Then S1 = a1

3/a2
3 in 3-D space and S1 =a1

2/a2
2 in 2-D space. When a1 = x/2 the gas 

pockets touch each other. This happens when S1 = p/6 = 0.52 in 3-D space. 
Therefore, for values of the gas saturation higher than these critical value or 
values of the water saturation between 0 and 0.48, the theory is not rigorously 
valid. Another limitation to consider is that the size of gas pockets should be 
much smaller than the wavelength, i.e., a1<< VPr/f, where VPr is a reference 
velocity and f is the frequency. 
 
The complex P-wave velocity is given by  
 

                            4 / 3,c m
c

KV µ
ρ

+=                                                                 (7.1) 

 
where Kc is the complex bulk modulus (given below). mm is the dry-rock shear 
modulus and r is the effective density (or bulk density). 
 
The concept of complex velocity can be used to obtain the phase velocity and 
attenuation (e.g. Carcione, 2001, p. 55), given by  
 

                            
1

1ReP
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V
V

−
  
  
   

=                                                                     (7.2) 

 
and attenuation is defined as inverse quality factor  
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The dry-rock moduli Km and mm can be obtained, for instance, from laboratory 
measurements in dry samples. If VP and VS are the experimental dry-rock 
compressional and shear velocities, the moduli are given approximately by 
 

                            ( ) ( )2 2 241 ,     1 ,
3m s m sP S SK V V Vφ ρ µ φ ρ 

 
 
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where rs is the grain density. 
 
The effective density is given by 
                         
                            ( )1 ,s fρ φ ρ φρ= − +                                                              (7.5) 
 
where rf = Sgrf1 + (1 - Sg)rf2 and rf1 and rf2 are the densities of fluid 1 and fluid 2 
(gas and water in White’s theory). 
 
Assuming that the dry-rock and grain moduli, and permeability, k, of the 
different regions are the same, the complex bulk modulus as a function of 
frequency is given by  
 

                            ,
1c

KK
K W
∞

∞

=
−

                                                                       (7.6) 

 
where 
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is the - high frequency - bulk modulus when there is no fluid flow between the 
patches. K1 and K2 are the - low frequency - Gassmann moduli, which are given 
by 
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where Ks and Km are the solid- and dry-bulk moduli. 
 
 
7.3 Results 
    
We consider the material properties shown in Table 7.1, where the moduli and 
density of the grain material correspond to a mixture of 90 % quartz and 10 % 
clay. Here, we use an effective average for the grain moduli Ks and ms. Ks1, ms1 
and Ks2, ms2 are the sand-grain and clay-particle bulk and shear moduli, while we 
assume that Ks is equal to the average of the upper and lower Hashin-Shtrikman 
bounds (Mavko et al., 1998, p. 106). The same approach is used for the shear 
modulus. 
  
The Hashin-Shtrikman bounds for the bulk modulus are  
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The Hashin-Shtrikman bounds for the shear modulus are 
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These equations give the upper bound when the stiffest material is termed 1, and 
the softer material is termed 2, then, f2 = C and f1 = 1 – C.  The average grain 
density is simply rs = (1 – C)rs1 + Crs2, where rs1 and rs2 are the density of 
quartz and clay, respectively. On another hand, the lower bound is computed by 
interchanging which softest material (clay) is termed 1 and stiffer material 
(quartz) is termed 2. 
 
The presence of clay also affects the dry-rock bulk and shear moduli. Here we 
use the modified model of Krief et al. (1990) (eq. 2.5) to obtain the effective dry 
bulk and shear moduli, where the empirical values A = 2 and a = 0.5 were 
obtained by fitting data as reported by Han et al. (1986) (provided by Carcione et 
al., 2000). In general, the typical reservoir sandstone contains few percent clay. 
Therefore, in the present study we use 10 % clay. Here the HS bounds are used to 
obtain the effective material moduli, while the modified model of Krief et al. 
(1990) is used for estimating the frame moduli. 
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Note that White's theory does not consider tortuosity [the value of tortuosity 
given in Table 7.1 is typical of a sandstone (e.g., Johnson et al., 1987)]. If a1 and 
a2 are the outer and inner radii of the gas pockets, and we denote the space 
dimension by m, water saturation can be expressed by Sw = 1 − (a1/a2)

m. A source 
of discrepancy between theoretical and numerical results may arise from the fact 
that White's theory does not consider the interaction between gas pockets, while 
this interaction is present in the numerical simulations.  
 
The transition frequency separating the relaxed and unrelaxed states, which is the 
location of the relaxation peak, is approximately given by  

 

                                  
( )2 1

2
2

2

,E
c

Kf
a a
κ

πη
=

−
                                                        (7.12) 

 
where k is the permeability, KE2 is given in equation (7.7), and h2 is the viscosity 
of water. Dutta and Seriff (1979) consider a1

2, instead of (a2- a1) 
2, in the 

denominator. However, the relevant relaxation distance should be the thickness of 
the outer shell, i.e., a2- a1. White considers a harmonic displacement applied to 
the outer spherical surface, which creates two different pressures in the outer 
shell and the inner sphere. Therefore, the relaxation distance should be the 
difference between the two radii (Gist, 1994). Relaxation frequencies of 
essentially the same physical nature, but for the plane layered rocks, have been 
given by White et al. (1975), Norris (1993) and Gurevich and Lopatnikov (1995). 
The critical frequency from equation (7.12) presents for local flow mechanism, 
which increases, with increasing permeability and decreasing viscosity. On the 
other hand, the original Biot critical frequency (eq. 2.26) has opposite behaviours, 
since it presents for global flow mechanism.    
 
There are two cases giving the same gas saturation. They are illustrated in Figure 
7.1 for a two-dimensional porous medium. Figure 7.1a shows four gas pockets, 
where the gas saturation is Sg = 4pa1

2 [the size of the square is x = 1/2, and 
2 1/a π=   (see section 7.2)]. We may increase the saturation to Sg = 16pa1

2 in 
two different ways. In Figure 7.1b, a1 is constant, while in Figure 7.1c, a2 is 
constant. 
 
When a2 is constant, we can deduce the critical water saturation, Swc, for which 
the attenuation is maximum. For a given frequency, and using Sw=1-(a1/a2)

3, we 
obtain from equation (7.12): 
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If a1 is constant, the critical saturation is given by 
                                         

            2
1
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2

2
1 1 ,E

wc
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κ
πη

−
 
  
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= − +                                                          (7.14) 

 
                  

      Grain  
bulk modulus,       Ks1 
shear modulus,      µs1 
density,                  ρs1 

     39    Gpa 
     33    Gpa 
 2650    kg/m3 

      Clay 
bulk modulus,       Ks2 
shear modulus,      µs2 
density,                  ρs2 

     20    Gpa 
     15    Gpa 
 2000    kg/m3 

      Matrix 

bulk modulus,       Km 
shear modulus,      µm 
porosity,                f 
permeability,         k 
tortuosity,              T 

   8.67   GPa 
   6.61   GPa 
     0.3 
   0.55   D 
     2.5 

      Water 
bulk modulus,       Kw 
density,                 ρw 
viscosity,              ηw 

     2.4   GPa 
  1040   kg/m3 
     1.8   cP 

      Gas 
bulk modulus,       Kg 
density,                 ρg 
viscosity,              ηg 

   0.01   GPa 
    100   Kg/m3 
   0.02   cP 

C = 10 %, Ks = 34.32, µs = 35.32 GPa, rs = 2585 kg/m3 

  
                 
 
As stated in section 7.2, the size of the gas pockets, a1, should be much smaller 
than the wavelength. Let us consider a reference velocity VPr = 3000 m/s, a 
maximum outer radius a2 = 7 mm, and Sg = 0.52 [the upper-limit gas saturation 
for which White’s model holds (see section 7.2)]. Since a1 = a2Sg

1/3, the condition 
a1 << VPr/f implies f << 536 kHz. With these limitations in mind, we proceed in 
the following to analyse White’s results and compare these results with numerical 
simulations.  
 
The modelling algorithm uses a numerical mesh with rectangular cells (here we 
consider square cells). Let us assume that a2 is constant. Since the size of the 
elementary square 2ax n xπ= = ∆ , where n is a natural number and ∆x is the grid 

Table 7.1: Material properties of the rock.
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Figure 7.1: Two different sizes for the gas pockets give the same gas
saturation, depending on the values of the inner and outer radii a1 and
a2. In (a) the saturation is Sg = 4πa12, while in (b) and (c) the
saturation is the same and equal to four times the saturation in (a). Gas
saturation can then change by varying a1 and keeping constant a2 or
vice versa.  
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spacing, 2 /ax nπ∆ = . If N is the number of cells of the gas pocket, then N∆x2 = 
pa1

2, and Sg = N/n2. On the other hand, if a1 is constant, the grid size is computed 
as 1 /x a Nπ∆ = . An example of White’s partial saturation model represented on 
a 2-D numerical grid is shown in Figure 7.2, where water and gas are indicated 
by black and white colours, respectively. The model is an example for a1 = 2 mm 
and a source central frequency of 100 kHz. The grid size is 208 × 208 and the 
grid spacing is ∆x = 0.886 mm (30 grid points are used for the absorbing 
boundaries at the sides of the mesh). A gas pocket is modelled with N = 16 cells, 
n = 14, x = 12.41 mm and a2 = 7 mm. Water saturation is then Sw = 0.918. The 
simulation corresponding to the model shown in Figure 7.2 uses a time step of 
0.12 ms. The source in all the simulations is a Ricker wavelet applied to the solid 

Figure 7.2: White’s model in a two-dimensional numerical
mesh. Water and gas are indicated by black and white colors,
respectively. Source (S) and receivers (Ri) are indicated. A
circular region surrounding the source is fully water saturated
to assure a uniform initial wavefront. Gas pocket radius is a1 =
2 mm and water saturation Sw = 0.918 (a2 = 7 mm). 
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skeleton and the fluid phase (a bulk source without shear components). A region 
with a radius of 30 grid points and 100 % water saturation surrounds the source 
location in order to obtain a uniform initial wavefront. 
 
Let us first consider that the radius of the outer sphere, a2, is constant and equal to 
4 mm. Figure 7.3 shows the P-wave velocity (a) and attenuation factor (b) versus 
water saturation for different frequencies and a permeability of 550 mD. The 
analytical and numerical (black dots) evaluation of Gassmann’s velocity has been 
performed on a homogeneous porous medium by averaging the fluid bulk 
modulus with Wood’s equation (Mavko et al., 1998, p. 112). Gassmann’s 
velocity (e.g., Carcione, 2001b, p. 257) is also shown as a dotted curve. The 
differences in velocity can be important for increasing frequency. For instance, 
the difference between the seismic velocity (Gassmann's curve) and the ultrasonic 
velocity (100 kHz) predicted by White's model is 120 m/s at 90 % water 
saturation [the respective wavelengths are approximately 150 m (seismic 
frequencies) and 3 cm (100 kHz)]. The simulations predict higher velocities 
compared to White's model, and the relaxation peaks are shifted towards lower 
water saturations. At full saturation, the numerical results reveal slightly higher 
velocities than predicted by White’s theory, since White’s theory does not 
consider (Biot) global flow, i.e., K becomes real in fully saturated rocks (eqs. 7.6, 
7.7), and therefore, no energy losses occur. However, the physics revealed by the 
numerical results is similar to that predicted by White's model. 
 
Figure 7.4 shows the P-wave velocity (a) and attenuation factor (b) versus water 
saturation for different permeabilities and a frequency of 100 kHz. The dotted 
line is Gassmann's velocity, obtained by mixing the fluid moduli with Wood's 
average. The numerical phase velocities coincide with White's velocities for low 
permeabilities. For 550 and 5000 mD, the simulations predict higher velocities. 
This implies greater velocity dispersion (see also the higher attenuation levels in 
Figure 7.4b), due to additional dissipation mechanisms, which are not predicted 
by White's model. 
 
Figure 7.5 shows the P-wave velocity (a) and attenuation factor (b) versus 
frequency for different water saturations. The permeability is 550 mD. As before, 
higher velocities and attenuation levels, compared to White's model, are observed 
by the numerical simulations. The shift of the peaks towards lower frequencies 
can be an indication of the presence of local fluid flow mechanisms. 
 
Let us assume now that the radius of the gas pockets, a1, is constant and equal to 
2 mm. The results, corresponding to Figures 7.3, 7.4 and 7.5, are respectively 
shown in Figures 7.6, 7.7 and 7.8. The results reveal the same physical behaviour 
as for constant a2.  
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Figure 7.3: P-wave velocity (a) and attenuation factor (b) versus water
saturation for different frequencies. The dashed line is the results from
simulations, while the solid lines are from White’s model. The dotted
line in (a) is Gassmann's velocity, obtained by mixing the fluid moduli
with Wood's average.   

0.0 0.2 0.4 0.6 0.8 1.0

2.9

3.0

3.1

3.2

(a)

 500 kHz
 250
 100
  50
 Gassmann (numerical)
 Gassmann

50
 kH

z10
0

25
0

50
0

a2 = 4 mm  κ = 550 mD

VP

Sw

0.0 0.2 0.4 0.6 0.8 1.0

0

25

50

75

100
(b)

 500 kHz
 250
 100
  50

50 kHz

10
0

25
0

50
0

a2 = 4 mm  κ = 550 mD

10
00

/Q
P

Sw



Chapter7. Comparison of White’s model with numerical experiments  
in partially saturated rocks 

 
 

 

119

 

Figure 7.4: P-wave velocity (a) and attenuation factor (b) versus water
saturation for different permeabilities and a frequency of 100 kHz. The
dashed line is the results from simulations, while the solid lines are from
White’s model. 
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Figure 7.5: P-wave velocity (a) and attenuation factor (b) versus
frequency for different water saturations. The location of critical
frequencies is indicated for different saturations. The dashed lines are the
results from simulations, while the solid lines are from White’s model. 
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Figure 7.6: As in Figure 7.3, but in this case, we keep constant the 
radius of the gas pockets a1 = 2 mm. 
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Figure 7.7: As in Figure 7.4, but in this case, we keep
constant the radius of the gas pockets a1 = 2 mm. 
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Figure 7.8: As in Figure 7.5 but, in this case, we keep 
constant the radius of the gas pockets a1= 2 mm. 
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The critical water saturation, shown in Table 7.2 is in fairly good agreement with 
the location of the relaxation peaks predicted by White's model. We observe the 
same physical behaviour for both constant a2 and constant a1, indicating that the 
physics is substantially dependent on the difference a2- a1 (see eq. 7.12). 
 
Since equation (7.12) has the form of a length-squared dependency characteristic 
of diffusion phenomena, we define a critical length scale 
 

                                ( )2 1
2 ,E

c
w

KL a a
f

κ
πη

≈ = −                                                   (7.15) 

 
suggesting that during a seismic period the pore-pressure can equilibrate over a 
spatial scale smaller than Lc, corresponding to the distance over which the slow 
wave propagate/diffuses away from a gas-fluid interface (e.g. Johnson, 2001). In 
contrast, saturations that are heterogeneous over scales larger than Lc have wave 
induced pore pressure gradients that cannot equilibrate. Critical length scales are 
typically 1-10 mm for laboratory measurements and tens of centimetres for field 
seismic frequencies (Mavco and Mukerji, 1998). Critical saturation (solid line) 
and relaxation scale (dashed line) versus frequency, obtained from equations 
(7.14, 7.15), respectively, are shown in Figure 7.9. Note that the critical 
saturation theory from equations (7.14, 71.5) does not exist at full saturation. 
Using the material properties from table 7.1 the relaxation peaks appear close to 
Sw = 1 at laboratory saturation scales (a1 ∼ 0.5-5 mm), and move to lower Sw with 
increasing a1, approaching to seismic saturation scale. In particular, the relaxation 
peak is independent of frequency for a1 = 0.1 mm. However, we have to keep in 
mind that the size of the gas pockets, a1, should be much smaller than the 
wavelength following White’s model. The relaxation scale Lc is dependent only 
on the rock and fluid properties, and decreases rapidly from several centimetres 
within the seismic frequency band to about 0.5 mm in the ultrasonic range.  
           
Snapshots of the fluid particle velocity relative to the solid (a), fluid pressure (b), 
and particle velocity of the solid (c) are shown in Figure 7.10. They correspond to 
the model shown in Figure 7.2, with 92 % water saturation and a central 
frequency of 500 KHz and a corresponding smaller grid spacing ∆x = 0.1 mm in 
a 660 × 660 to highlight the details (54 grid points are used for the absorbing 
boundaries at the sides of the mesh). The two main wavefronts are the fast P-
wave and the slow P-wave. The conversion fast P-wave to slow P-wave at each 
gas pocket can clearly be appreciated. At 500 KHz, slow waves have a phase 
velocity of 841 m/s in the brine saturated region and 200 m/s in the gas pockets 
(the fast P-wave velocity is 3210 and 3094 m/s, respectively). The primary fast 
wave P+ generates slow waves P+P- at the gas pockets. In addition, significant  
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Table 7.2: locations of relaxation peaks (in saturation) obtained from
White’s model and critical saturation expressions (7.13, 7.14).   

                                              a2 = 4 mm , κ = 550 mD 
       f  (kHz)         50         100         250        500 
White’s model   
         Swc 

     0.95 
     0.99 

       0.90 
       0.90 

       0.78 
       0.72 

      0.67 
      0.56 

                                              a2 = 4 mm , f = 100 kHz 
      κ   (mD)         10         100           550       5000  
White’s model   
         Swc 

     0.29 
     0.21 

       0.65 
       0.55 

        0.90 
        0.91 

      0.98 
      1.00 

                                              a1 = 2 mm , κ = 550 mD   
       f  (kHz)         50         100           250         500  
White’s model   
         Swc 

     0.74 
     0.70 

       0.81 
       0.79 

        0.89 
        0.89 

      0.93 
      0.94 

                                              a1 = 2 mm , f = 100 kHz 
      κ   (mD)        10         100           550       5000  
White’s model   
         Swc 

    0.34 
    0.41 

       0.68 
       0.73 

        0.89 
        0.55 

      0.99 
      0.98 
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Figure 7.9: Critical water saturation Swc (solid line) and relaxation scale Lc  

(dashed line) as a function of wave frequency f for a range of values of the 
radius a1 of the gas spheres (patches). Material and fluid properties are as 
given in Table 7.1. 
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Figure 7.10: Snapshot of the fluid particle-velocity relative to the solid (a), fluid
pressure field (b) and solid particle velocity (c) corresponding to the model shown
in Figure 7.2, with 92% water saturation and a central frequency of 500 kHz.
Propagation time is 18 µs.  
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slow waves are generated by the scattered P+ inside the gas pocket (P+P+P-). 
These are the two main events generated in the fluid phase during passage of the 
primary P+, and thus represent the most significant loss components, removing 
energy from the front of the pulse and adding to its tail. The fluid particle 
velocity of the slow waves (Figure 7.10a) is high within the gas pocket and less 
pronounced in the brine, while for the fluid pressure (Figure 7.10b), the situation 
is the opposite. In the solid (Figure 7.10c), P+ dominates the wavefield, while the 
slow waves are less clearly identified. 
 
A final numerical experiment to illustrate the phenomenon is shown in Figure 
7.11. Figure 7.11 shows a gas pocket of radius a1 = 5 mm with a circular source 
located at a distance a2 = 23 mm from its centre. The rock and pore-fill are the 
same as in the previous experiment (Table 7.1). We use a fine mesh of ∆x = 0.1 
mm and a source frequency of 500 kHz. The seismograms of the particle velocity 
(Figure 7.12) are recorded at receivers located 1 mm away from the fluid/gas 
boundary in the water saturated and gas saturated rock, respectively. P+ denotes 
the direct fast wave and PCP+ is its return from the pocket centre (focus). PB

+P- 
and PC

+P- are their associated slow waves. In the solid, the P+ arrival is shown 
together with the scattered PC

+P- wave with opposite phase after focusing in the 
centre of the gas pocket. In the fluid wavefield, we observe the corresponding 
slow waves PB

+P- and PC
+P-, respectively, generated at the fluid/gas boundary. 

These are equivalent to the two consecutive slow waves apparent from the 
experiment in Figure 7.10. The tail of arrivals recorded within the gas zone, 
following the main events, consists of slow waves due to P+ ringing within the 
gas pocket, while the late P- events at the end of the record are the direct (in the 
brine) and transmitted (in the gas) slow wave generated at the source. 
 
More details of these experiments can be appreciated in Figure 7.13, which 
shows the seismograms of the fluid (relative) (a) and solid (b) particle velocities 
along the receiver line. The fast- and slow-wave events are clearly distinguishable 
by their different dips, i.e. low angles (high velocity) for P+ and high angles (low 
velocity) for P-. The focusing of the direct P+ is well expressed in both fluid and 
solid particle velocities, and a similar focusing of P+ is evident in the lower 
section of (b), originating from P- to P+ conversion at the water/gas interface. The 
latter, however, has less relevance for the problem at hand since this event is 
confined to the tail of the recorded pulse. On the other hand, the first event is 
important since it interferes with the primary pulse, and, moreover, continues to 
bounce around within the gas pocket (b) generating multiples of slow waves 
propagating inwards in the gas zone as well as outwards in the fluid zone (a). The 
two most significant slow-wave events (PB

+P- and PC
+P-) are clearly separated in 

the seismograms.  
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Figure 7.12: Fluid and solid particle velocities are recorded in receivers
located on each side (1mm) of the gas/fluid boundary. The solid line
indicates receivers for the seismograms in Figure 7.13. 
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7.4    Conclusion 
  
Fast P-wave conversion into slow P-waves is the dominant mechanism of wave 
dissipation and velocity dispersion in partially saturated rocks in the frequency 
range [10-500 kHz] (see also chapter 6). This phenomenon is observed in our 
numerical simulations, and is partially predicted by White's model, regarding the 
slow P-wave motion. This phenomenon is also described by Hudson (1988). 
Under compression, the liquid is driven into the space previously occupied by 
gas.  Norris (1993) and Gurevich and Lopatnikov (1995), using alternating poro-
elastic layers, have shown that attenuation and velocity dispersion measurements 
can be explained by the combined effect of layering and energy transfer between 
wave modes. If the fluid compressibility varies significantly from point to point, 
diffusion of pore fluid between different regions constitutes a mechanism that can 
be important at seismic frequencies. Carcione (1998) has observed this strong 
dissipation in numerical simulations of wave propagation in alternating plane 
layers saturated with water and gas. This phenomenon may explain the low 
signal-to-noise P-wave sections observed in some ocean bottom seismic data 
(Kommedal et al., 1997; Granli et al., 1999). In fact, the presence of gas, leaked 
from the reservoir to the overburden, has the effect of both lowering seismic 
velocities and increasing seismic attenuation, producing low signal-to-noise ratio 
P-wave sections. (This effect is not present in S-wave sections.) 
 
In general, our simulations predict higher attenuation (although narrower 
relaxation peaks) and higher velocities than White's model. This is mainly due to 
additional wave dissipation due to multiple scattering and wave conversion. 
Moreover, White's model does not take into account local fluid flow (Gist, 1994) 
and (Biot) global fluid flow effects, while they are present in the numerical 
simulations (these effects increase the velocity). Other sources of discrepancy 
between model and numerical experiments can be attributed to the fact that the 
grid representations of gas pockets are not exactly circles, since the mesh is 
composed of rectangular cells. We obtain expressions for the relaxation critical 
frequency and critical saturation for which attenuation has a maximum value. Our 
simulations reproduce the trends regarding the location of the relaxation peaks as 
a function of frequency and saturation. That is, the peaks move towards higher 
water saturations for lower frequencies and higher permeabilities.  
 
The final example shows an analysis of the wave field for a single gas pocket, 
modelling the conditions for which White (1975) has developed the theory. The 
physical phenomena involved in the problem are illustrated by this simulation. 
The conversion from fast to slow compressional wave and the multiple events 
generated at the gas bubble are clearly the main loss mechanisms for the primary 
pulse. 
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Chapter 8 
 
Conclusions and future work 
 
 
 
With a better understanding of rocks and porous media, together with a 
combination of the physical theory and observations on natural rocks, we are able 
to obtain a more comprehensive multi-phase model for shaley sandstones, which 
is a typical rock in hydrocarbon reservoirs. The model gives the elastic properties 
- wave velocity and quality factor - of sandstone as a function of clay content, 
pore pressure, frequency, and partial saturation. The theory includes fluid mixing 
laws in partial saturated rocks, viscoelasticity and viscodynamic effects to model 
the velocity dispersion and attenuation values observed in rocks from low 
(seismic) to high (ultrasonic) frequencies. The viscoelastic effect is included in 
the theory where a constant-Q model represents internal friction, thermal effects 
and other similar effects, and Zener’s model presents for Squirt flow phenomena. 
Modelling of viscoelasticities requires first calibration to fit a general functional 
behaviour of quality factor (and velocity dispersion) versus frequency. Gas 
chimneys can also be however explained by elastic wave propagation (O’brien et 
al., 1999). Here the gas zones are detected by using elastic modelling experiment.     
 
For instance, the model predicts the behaviour of natural sandstones in many 
respects; i) Wave velocity increases considerably at high frequencies compared to 
low frequencies (the fluid has enough time to achieve pressure equilibration at 
low frequencies, while at high frequencies, the fluid cannot relax and the pores 
are stiffer than at low frequencies). ii) There is a strong decrease of the velocity 
and Q-factor with decreasing differential pressure (this effect is mainly due to the 
dry-rock moduli, which are sensitive functions of the effective pressure). The 
advantage of the model is that the frame moduli are not only a function of 
porosity and clay content but also of the pressure. iii) For a Berea sandstone the 
attenuation has maximum at approximately the location of the squirt flow peak 
and 90 % water saturation in sonic frequency range. iv) In general, attenuation 
increases with increasing clay content. However, attenuation is strongly 



Chapter7. Comparison of White’s model with numerical experiments  
in partially saturated rocks 

 

132 

dependent on both clay content and fluid saturation. For shaley sandstone with 
gas, the attenuation has a peak in the sonic-frequency band, while the partially 
saturated sample has its relaxation peak at ultrasonic frequencies. 
 
The method has been applied to the Tune field in the Viking Graben sedimentary 
basin of the North Sea (Carcione et al., 2002a). A high-resolution velocity map 
that reveals the sensitivity to pore pressure and fluid saturation in the Tarbert 
reservoir is obtained from 3-D pre-stack velocity by tomography and depth 
imaging. The pressure map predicted in Tabert formation has good agreement 
with the local well data and the structural features of the Tarbert formation and its 
known pressure compartments. The theory of model can be used for inversion 
applications such as sonic-log interpretation, pressure and fluid prediction, 
lithological inversion, AVO inversion, and others. 
 
The limitation of the model relates to modelling of the viscoelaticity to describe 
attenuation mechanisms, which are not of viscodynamic nature (local and global 
fluid-flow losses). However, this limitation is a consequence of the absence of 
experimental data in the sonic and seismic bands, while reliable Q-factor 
measurements are difficult to obtain. The constant-Q model could be substituted 
by a generated Zener model (parallel or series connection of Zener elements), 
which can be used to fit a general functional behaviour of quality factor (and 
velocity dispersion). In this sense, the model is not a predicting tool.  Due to lack 
of a micro-structural theory, we consider here the effective properties for the 
mixture in partially saturated rocks rather than the detailed flow patterns at pore 
scale, which are invisible to the waves commonly applied in field and laboratory 
experiments.  
   
In future work, the model should be developed and improved in order to solve the 
limitations of multi-phase model and better describe the microscopic behaviours 
in the natural rocks (e.g., heterogeneity, crack, local flow). In addition, the fluids-
distribution scale effect should be considered and taken into account. With more 
reliable Q-factor measurements the static mixing law for effective fluid properties 
could be developed for better describing the dynamic behaviours (at microscopic 
scale) in partially saturated rocks. Moreover the model should calibrate with 
experimental data in different frequency ranges, seismic (Hz), sonic (kHz) and 
ultrasonic (MHz) in order to better quantify and qualify the values of empirical 
parameters in the model such as the parameters of Krief et al. and of Brie et al., 
and others corresponding to different rock types. Despite the limitations, for 
instant, the multi-phase Biot-type model for shaley sandstones should be applied 
to hydrocarbon fields for detection and prediction of hydrocarbons, lithology and 
anomalies in pore pressure in the formation.  
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Using the numerical solution of the poro-elastic wave equation, based on Biot’s 
theory, we are able to conduct wave propagation experiments in a rock sample 
with partial saturation, where the fluid distribution (gas/water) pattern is based on 
published tomography scans (Cadoret et al., 1995) and modelled using the 
random-fractal approach of Frankel and Clayton (1986). Furthermore, our 
numerical experiments of wave propagation are compared with those of White’s 
theory for partial saturation (White, 1975). Without resorting to additional 
phenomenological matrix-fluid interaction mechanisms, we are able to reproduce 
the main features of published experiments (Cadoret et al., 1995, 1998; Murphy, 
1982) on P-wave velocity and attenuation in partially saturated rocks at sonic and 
ultra-sonic frequencies [10-500 kHz]. By analysis of results, we arrive at the 
following conclusions: i) Wave propagation in porous rocks depend not only on 
the saturation but also on the distribution of the fluid phase at various scales. In 
the case of unknown fluid distribution, it is suggested that one should use the 
modified model of Brie et al. (1995) for mixing bulk moduli of the mixture 
(Pham et al., 2002c). ii) Fast P-wave conversion into slow P-waves and the 
multiple events generated at the gas bubbles is the main mechanism of wave 
dissipation and velocity dispersion in partially saturated rocks. This phenomenon 
may explain low signal-to-noise P-wave sections, since the present of gas, leaked 
from reservoir to the overburden, causes both lower seismic velocities and 
increased seismic attenuation (this effect is not present in S-wave sections). The 
dissipation of P-wave is less in case of heterogeneity in rock material, compared 
to fluid heterogeneity of equivalent seismic contrast. iii) The results reveal the 
strong responses of both P-wave velocity and attenuation corresponding to 
permeability, while at full saturation the sensitivity to permeability is 
insignificant. iv) Although the modelling is two-dimensional and the interaction 
between the gas pockets is neglected in White’s model, the numerical results 
show the trends predicted by theory. Following White’s theory, the main 
mechanism in partially saturated rocks is due to pressure equilibration, which 
induces partial fluid flows, and hence causes attenuation and velocity dispersion 
of the wave field. v) The expressions of the relaxation (critical) frequency (and 
critical saturation) for which attenuation has a maximum value, are obtained and 
are generally in good agreement with our simulations and White’s model.  
 
Numerical rock physics experiments provide full control on sample specifications 
and composition of the fluids. Since grid methods provide more monitoring 
options than possible in a physical experiment, the methods outlined in this study 
offer capabilities for designing and interpreting physical experiments.   
 
The successful results of numerical rock physics experiments give a good guide 
for future work, i.e. the strong effects on P-wave propagation related to saturation 
distributions, the permeability and frequency. As discussed before, fluid-
distribution scale is one of the key factors in affecting the acoustic properties. The 
saturation scale in a reservoir depends on several factors, porosity, saturation 
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history (drainage, imbibition), capillary pressure and others. In order to obtain the 
velocity and attenuation of seismic with the actual fluid-distribution scale in 
reservoir, we suggest the following processing sequence; 1) First, run reservoir 
simulation (Eclipse) to obtain the image of fluid saturation in the reservoir where 
the well data and geological model are required as input data, 2) Then simulate 
the synthetic data, based on the full-wave solution of the poro-elastic equations 
(Appendix B), in order to obtain more reliable results of P-wave velocity and 
attenuation, corresponding to the in-situ state of fluid distribution in reservoir.  
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Appendix A 
 
Three-phase Biot-type theory of shaley sandstones 
 
 
Saturated shaley sandstones require the consideration of a medium consisting 
of three phases: sand clay and fluid. A three-phase Biot-type theory first 
developed by Leclaire et al. (1994) explicitly takes into account the presence 
of three phases: solid, ice and water. Carcione et al. (2000) replaced the ice 
with clay and included the contributions to the potential and kinetic energies 
due to the contact between the sand grains and the clay.  
 
The total potential energy of the system can be expressed as 
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where θi and di are the invariants of the strain tensor, called dilatations and 
deviators, while Kij and µij are respectively the bulk and shear moduli of the 
effective phases. The indices i, j = 1, 2, 3, denote sand, fluid, and clay, 
respectively.  
  
For a three-phase medium the bulk stiffness matrix is  
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where 
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Here Ks, Kc and Kf are the sand, clay and fluid bulk moduli, respectively, Kav is 
the average bulk modulus, Ksm, Kcm are sand and clay matrix bulk modulus, φs, 
φc, and φ are the proportion of sand, clay and porosity, respectively. The 
factors c1 and c3 are called the bulk consolidation coefficients for sand and 
clay, respectively, and are always between 0 and 1. For a nonconsolidated 
medium such as a suspension of sand grains in a fluid, c1 = 0, while c1 = 1 
corresponds to a situation where the sand grains form a monolithic block.  
 
The shear stiffness matrices are expressed as follows: 
 

                           
11

13

33

,
0,

,

sm

cm

µ µ
µ
µ µ

=
=
=

                                                                          (A-3)      

 
where µsm, µcm are sand and clay matrix bulk moduli. 
 
The displacements of sand, fluid, and clay are respectively represented by the 
vectors u1, u2 and u3. The kinetic energy density Ek is a function of the local 
velocities 1u , 2u  and 3u  given by the time derivative of displacements. With a 
development of Ek to the second order and assuming that the motion of any 
phase is only caused by the wave propagation, 
 

                2 2 2
11 1 12 1 2 13 1 3 22 2 23 2 3 33 3

1 1 1 .
2 2 2kE u u u u u u u u uρ ρ ρ ρ ρ ρ= + + + + +            (A-4)       

 
We now want to determine the induced mass tensor ρij. To obtain this 
purpose, we first deduce an expression for the kinetic energy through a 
microstructural argument and then compare the result with (A-4). Let us 
define the macroscopic velocities  
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which describe the flow of fluid with respect to sand and clay, respectively. 
Likewise 
 
                            3 1 1 3( )    and    ( )c sq u u r u uφ φ= − = −                                   (A-6) 
 
denote the macroscopic velocities characterising the movement of clay 
relative to the sand grains and vice versa, respectively. Since the relative flows 
are assumed to be of laminar type, the microscopic velocities can be expressed 
as 
 
                           1 1 1 3 3 3      and      v w v wα α= =                                               (A-7) 
 
and 
 
                           1 3        and       ,s q t rβ β= =                                              (A-8) 
 
where α1 and α3 are the fluid/sand and fluid/clay matrix coefficients, and β1 
and  β3 are the clay/sand and sand/clay matrix coefficients, respectively.  
 
The total kinetic energy is given by the expression  
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where Ωf, Ωc, and Ωs are the volumes of fluid, clay and sand, respectively. 
 
Following Leclaire et al. (1994), we define 
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where Ω(1) = Ωc, Ω

(3) = Ωs, αij
(l) = αlδij and βij

(l) = βlδij. 
 
Assuming statistical isotropy, we obtain mij

(l) = mlδij and nij
(l) = nlδij, therefore 

(A-9) simplifies to 
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where  
 
                   1 ,s sρ ρ φ=         2 fρ ρ φ= ,   and   3 .c cρ ρ φ=  
 
Finally, expressing the energy as a function of 1u , 2u  and 3u , the equation (A-
12) can be written as  
 

         

( ) ( )

( ) ( )
( ) ( )
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φ ρ φ ρ φ φ φ ρ

φ ρ φ ρ φ ρ φ

ρ φ ρ φ ρ φ
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+ − + − + + −

+ − + − + −

         (A-13) 

 
The generalised mass densities ρij are obtained from the identification of the 
coefficients of expression (A-13) with those of (A-4). This gives 
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                        (A-14) 

 
where 
 

                            

31
21 23

3 1
13 31

,    ,

,    

f f

s

s c

mma a

n na a

φφ
ρ ρ

φ φ
ρ ρ

= =

= =
                                                   (A-15) 

 
are the tortuosity parameters. 
 
When there is no relative motion between the three phases, the following 
relationship holds 
 
                            ( )11 22 33 12 23 13 1 2 32ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ≡ + + + + + = + + ,        (A-16) 
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where ρ may be viewed as the effective mass density. 
 
In order to obtain the viscous flow resistance coefficients b11 and b33, we first 
consider the idealised situation when the solid part can be modelled as a dilute 
concentration of sand and clay spherical particles in the fluid. This situation is 
realised in the high porosity limit (φ → 1). Since the concentration is dilute, 
each particle can be considered independently from the others. The viscous 
resistance force for a single sphere of radius R moving in a flow of average 
velocity V and a fluid viscosity ηf obeys Stokes’ law, 
     
                            6 fF VRπη= .                                                                  (A-17) 
 
Suppose that in a unit volume we have Ni particles of radius Ri, where i = 1 
(sand grains) or 3 (clay particles). Then, the viscous resistance to the flow by 
particles of type i can be written as 
 
                            6i f i iF VN Rπη= .                                                              (A-18) 
 
The density numbers Ni can be thought of as the total volume of the particles 
of type i divided by the volume of a single particle, 
 

                            
3

.4
3

i
i

i

N
R

φ

π
=                                                                    (A-19) 

 
Substitution of (A19) into (A18) yields 
 

                            29 ,
2i f i iF V Rη φ −=                                                              (A-20) 

 
or, for the viscous resistance coefficient, 
 

                            
2

2 29 .
2ii i f i ib F R

V
φ η φ φ −= =                                                  (A-21) 

 
Note that the quantity 
 

                            
22

9
i

i
i

Rκ
φ

=                                                                        (A-22) 

 
can be thought of as a partial permeability of the matrix formed by particles of 
type i. Hence 
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Appendix B 
 
Numerical algorithm for wave propagation in 
poro-elastic isotropic media 
 
 
 
The theory of seismic wave propagation in porous media is modelled based on 
Biot’s theory and developed by Carcione (1998). In a porous medium, the 
particle velocity in the fluid is in general different from the particle velocity in the 
solid. This differential motion causes the existence of two P-waves, a fast P-wave 
and a slow P-wave. 
 
The fast P-wave has solid and fluid displacements in phase, and the slow 
compressional wave has out of phase displacement. The slow wave is generated 
by conversion at heterogeneities. 
 
The constitutive equations for an inhomogeneous, transversely isotropic poro-
elastic medium under plane strain conditions are given by [Biot and Willis 
(1957); Biot 1962] 
 
                        ( )2 ,t xx x x z z xE v E v M sτ µ α ε∂ = ∂ + − ∂ + +                                     (B-1) 
 
                        ( )2 ,t zz x x z z zE v E v M sτ µ α ε∂ = − ∂ + ∂ + +                                     (B-2) 
 
                        ( ) ,t xz z x x z xzv v sτ µ∂ = ∂ + ∂ +                                                           (B-3) 
  
                        ,t fp M sε∂ = − +                                                                          (B-4) 
 
and 
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                        ( ) ,x x z z x x z zv v q qε α= ∂ + ∂ + ∂ + ∂                                                  (B-5) 
 
 where τxx, τzz, and τxz, are the total stresses in component, p is the fluid pressure, 
v and q are the solid and fluid (relative to the solid) particle velocities, and sx, sz, 
sxz and sf, are the external sources of stress , respectively.  
 
The elastic coefficients are given by 
 

                        4
3mE K µ= + ,                                                                            (B-6) 

 

                        
2

,s

m

KM
D K

=
−

                                                                             (B-7) 

 

                        1 1 ,s
s

f

KD K
K

φ
  

= + −      
                                                             (B-8) 

 

                        1 ,m

s

K
K

α = −                                                                                 (B-9) 

                         
where Km, Ks and Kf are the bulk moduli of the drained matrix, the solid and the 
fluid, respectively. The stiffness E is the P-wave modulus of dry skeleton, M is 
the coupling modulus between the solid and the fluid, and ε is the poroelastic 
coefficient of the effective stress. 
 
The dynamical equations are derived, based on Biot’s theory, as 
 
                        ,x xx z xz t x f t xv qτ τ ρ ρ∂ + ∂ = ∂ + ∂                                                    (B-10) 
                          
                        ,x xz z zz t z f t zv qτ τ ρ ρ∂ + ∂ = ∂ + ∂                                                     (B-11) 
 
where ρ and ρf are the total and fluid densities, respectively. 
 
On the other hand, the pressure can be expressed, based on Darcy’s law 
 

                        ,x f t x t x xp v m q qηρ
κ

−∂ = ∂ + ∂ +                                                    (B-12) 

 



AppendixB. Numerical algorithm for wave propagation  
in poro-elastic isotropic media 

 

143

                        ,z f t z t z zp v m q qηρ
κ

−∂ = ∂ + ∂ +                                                    (B-13) 

 
where m = Tρf/φ, T denotes the tortuosity, η is the fluid viscosity and κ is the 
permeability of the isotropic medium. 
  
From equations (B-10), (B-11), (B-12), and (B-13) the velocity-stress 
formulation of the poro-elastic equations is obtained 
 

                        11 12( ) ( ),t x x xx z xz x xv p qηβ τ τ β
κ

−∂ = ∂ + ∂ − ∂ +                                 (B-14) 

 

                        ( )11 12 ,t z x xz z zz z zv p qηβ τ τ β
κ

 −∂ = ∂ + ∂ − ∂ + 
 

                              (B-15) 

 

                        ( )21 22 ,t x x xx z xz x xq p qηβ τ τ β
κ

 −∂ = ∂ + ∂ − ∂ + 
 

                            (B-16) 

 

                        ( )21 22 ,t z x xz z zz z xq p qηβ τ τ β
κ

 −∂ = ∂ + ∂ − ∂ + 
 

                             (B-17) 

 
where 
 

                        ( ) 111 12 2

21 22

.f
f

f

m
m

ρβ β
ρ ρ

ρ ρβ β
− −  

= −    −   
                                        (B-18) 

 
 
The system of equations for wave motion (B-1,…, B-4, B-14,…, B-17) can be 
written in matrix form as 
 
                             ,t∂ = +W MW S                                                                   (B-19) 
 
where  
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Here, the matrix, W is a vector that represents the wave-field, M is the 
propagation matrix, which contains the spatial derivatives and material 
properties, and S is the source vector. 
 
The source time function is a Ricker wavelet with central frequency fc, given by 
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( )
2

0
1
2

0( ) cos ,
t t

cf t e f t tπ
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where t0 = 3/fc. 
 
 
Considering the 1-D version of eq. (B-19) with S = 0, the plane wave  
 
                          ( )ci t kxe ω −=W W0 ,                                                                     (B-21) 
                             
where ωc is the complex frequency and k is the wave number, is a solution of eq. 
(B-19) and gives an eigenvalue equation for the eigenvalues λ = iωc. When using 
the Fourier pseudospectral method for computing the spatial derivatives, the 
wave numbers supported by the numerical mesh span from k = 0 to the Nyquist 
wave number k =π/∆x where ∆x is the grid spacing. It is shown that the 
eigenvalues come in complex conjugate pairs (Carcione and Quiroga-Goode, 
1995). When the fluid viscosity is zero, they lie on the imaginary axis, and 
describe propagating modes without dissipation. For a viscous fluid, the 
eigenvalues have a negative real part meaning that the waves are attenuated, in 
particular the slow wave. To be precise, the largest negative eigenvalue 
corresponds to the slow wave for k = 0:  
             

                            22.s
ηλ β
κ
 = − 
 

                                                                     (B-22) 

 
In order to have numerical stability, the domain of convergence of the time 
integration scheme should include this eigenvalue. For instance, an explicit 
fourth-order Runge-Kutta method (Jain, 1984, p. 71) requires dtλs > -2.78, 
implying a very small time step dt. In this case, the method is restricted by 
numerical stability rather than by accuracy. The presence of this large eigenvalue, 
together with small eigenvalues, indicates that the problem is stiff. In stiff 
problems, the solution to be computed is slowly varying but perturbations exist 
that are rapidly damped. In this case, the perturbation is the slow wave, which, in 
the presence of fluid viscosity, displays a diffusive character. 
   
As mentioned above, the spatial derivatives are calculated with the Fourier 
method by using the FFT(Fast Fourier Transform). This approximation is 
infinitely accurate for band limited periodic functions with cutoff spatial wave 
numbers, which are smaller than the cutoff wave number of the mesh. The 
stability problem posed by the eigenvalue λs can be solved if an A-table method 
(Jain, 1984) is used, implying stability in the open left-haft-plan. A better time 
integration technique can be achieved by using a partition method (Carcione and 
Quiroga-Goode, 1995). Here, the system can be partitioned into two set of 
differential equations, one stiff and the other nonstiff, such that they can be  
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treated by two different methods, one implicit and the other explicit, respectively. 
The stiff equations  
 

                          12t x xv qη β
κ

∂ =                                                                          (B-23) 

 

                          12t z zv qη β
κ

∂ =                                                                          (B-24) 

 

                          22t x xq qη β
κ

∂ =                                                                         (B-25) 

 

                          22t z zq qη β
κ

∂ =                                                                         (B-26) 

 
can be solved analytically, giving  
 

                          ( )* 12

22

1sdtn n
t x x xv v e qλβ

β
−∂ = − −                                                      (B-27) 

 

                          ( )* 12

22

1sdtn n
t z z zv v e qλβ

β
−∂ = − −                                                      (B-28) 

 
                           
                          ( )* sdt n

t x xq e qλ−∂ =                                                                       (B-29) 
 
                          ( )* sdt n

t z zq e qλ−∂ =                                                                       (B-30) 
 
Note that, when η = 0, is v* = vn and q* = qn, giving the pure elastic problem. 
 
The next step is to solve the nonstiff part by using an explicit method; a 4 th-
order Runge-Kutta algorithm is applied to solve equation (B-19) 
 

                          ( )2 2
6
dt

= + + + +n+1 *
1 2 3 4W W ∆ ∆ ∆ ∆                                      (B-31) 

                              
where * * * *, , , , , ,

Tn n n
x z x z zz xzv v q q pτ τ =  

*W  is the input, and  
 
                          = +* n

1∆ MW S                                                                       (B-32) 
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                          + +
2
dt 

 
 

1n+* 2
2 1∆ = M W ∆ S                                                     (B-33) 

 

                          +dt+
2

 
 
 

1n+* 2
3 2∆ = M W ∆ S                                                     (B-34) 

 
                          ( )+dt +* n+1

4 3∆ = M W ∆ S                                                       (B-35) 
 
The advantage of the partition method is that the time step is determined by the 
algorithm that solves the nonstiff equations.  
 
Since a geophone receiver detects the motion of the bulk, we follow Sahay 
(1994) and express the centre of mass particle velocity vector by  
 

                                 ,fρ
ρ

 
  
 

= +ψ v q                                                             (B-36) 

                   
where v and q  are the solid and fluid particle velocity vectors, respectively.  
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