Anisotropy in the salt outcrop at Cardona, Catalonia – implications for seismic imaging

Martin Landrø,1* Cai Puigdefabregas1 and Børge Arntsen1

Abstract
The world’s largest oil discoveries in recent years have been pre-salt, in reservoirs located below or close to salt bodies. It is often assumed that the salt is homogeneous and that a near-constant isotropic velocity in the salt body can be used for seismic imaging. Here we show that this simplification may be too simple. Based on field observations from an old salt mine in Spain, we estimate anisotropic parameters describing the exploited salt diapir. In its outcrop we identify a regular pattern of alternating halite and clay layers, where the thickness of each layer is close to periodic. From this observation, we estimate corresponding anisotropic parameters for this salt outcrop and find that the degree of anisotropy is moderate, of the order of 5% difference between horizontal and vertical velocities. Furthermore, we identify potential shear zones within the salt outcrop that can be mapped over distances of several hundred metres. The thicknesses of these shear zones are of the order of metres. Based on these observations, it is a huge simplification to treat salt bodies as homogeneous and isotropic for seismic imaging purposes.

Introduction
Creating seismic images of sedimentary structures beneath salt is commonly extremely challenging due to the complicated geometrical shapes of salt bodies (Pan et al., 2006; Mitchell et al., 2007). For imaging purposes, salt bodies are conventionally assumed to be homogeneous with no internal structure, but it is known that salt in some areas has large-scale internal layering (Huang et al., 2010). Ji et al. (2010) showed that subsalt structures could be better imaged by using velocity fields with vertical variation in salt bodies, and Bowling et al. (2010) found that considerable improvement in subsalt image quality could be achieved by including velocity anisotropy in sediments around salt bodies. It is, therefore, reasonable to suggest that taking internal salt anisotropy into account could further boost subsalt image quality.

In May 2009, we visited the Cardona salt mine in Spain (Figure 1). A geological map and cross-sections are shown in Figures 2 and 3. Cardona supplied Catalonia with salt for several centuries, ensuring a strong economy for this city. When mining ended some 20 years ago, the salt was being produced from approximately 1000 m depth. Today, there is no production from this salt mine, but it is open for tourists to visit.

The Cardona diapir is an elongated anticline with a salt core formed ahead of the Pyrenean thrust system with subsequent diapirism. A section through the basin from the Pyrenees to the foreland (Figures 2 and 3) shows the position of the Cardona diapir between the active Pyrenean thrusting to the north and the more passive foreland margin to the south, represented by the Montserrat alluvial fan conglomerate.

The sedimentary succession, Upper Eocene to Oligocene in age, was deposited when the basin lost connection to the Atlantic Ocean because of Pyrenean tectonics. The basin became confined and evaporites deposited (gypsum, halite, carnallite, and sylvite) over the Upper Eocene marine sequence. During the Late Eocene, a lacustrine sequence was deposited over the salt and finally a thick Oligocene fluvial and lacustrine succession filled up the basin.

Thin clay layers embedded in salt
Inside the salt mine thin clay layers may be observed, embedded in the halite (Figures 4–6). In some areas, the laminar clay layers are planar and parallel (Figure 4), and in other areas

1 NTNU (Norwegian University of Science and Technology), 7491 Trondheim, Norway.
* Corresponding author, E-mail: martin.landro@ntnu.no
parameters representing the layered salt body. For simplicity, and based on the observations in the mine, we estimate seismic anisotropy parameters for a periodic binary medium (i.e., two components only) consisting of clay and halite.

Let us denote clay as component 1 and halite as component 2, with symbols α, β and ρ denoting P-wave velocity, S-wave velocity and density, respectively. Let κ denote the net to gross ratio (thickness of clay divided by total thickness of halite and clay), expressed as a fraction between zero and one. The seismic parameters used for the two components are listed in Table 1. Thomsen (1986) introduced a set of parameters that can be used to describe an anisotropic medium. The fractional amount by which the horizontal P-wave velocity in
the effective medium exceeds the vertical P-wave velocity is
given by the anisotropy parameter (Stovas et al., 2006):

\[\varepsilon = 2\gamma_i^2\kappa(1 - \kappa)\Delta c_{44}\Delta s, \quad (1) \]

where

\[\gamma_i = \beta_i / a_i, \]

\[\Delta s = \Delta c_{44}(1 - \frac{1}{2}\Delta c_{44}) - \gamma_i^2\Delta c_{44}(1 - \frac{1}{2}\Delta c_{33}) \]

\[\Delta c_{33} = 2\frac{c_{33,2} - c_{33,1}}{c_{33,2} + c_{33,1}}, \quad \Delta c_{44} = 2\frac{c_{44,2} - c_{44,1}}{c_{44,2} + c_{44,1}}, \]

\[c_{33,2} = \alpha_i^2\rho_1, \quad c_{33,1} = \alpha_i^2\rho_2, \quad c_{44,2} = \beta_i^2\rho_1, \quad \text{and} \quad c_{44,1} = \beta_i^2\rho_2. \]

Figure 7 shows \(\varepsilon \) as a function of net to gross assuming an
S-wave velocity in clay of 1000 m s\(^{-1}\) and 1500 m s\(^{-1}\). Figure 8
shows the ratio between the horizontal and vertical P-wave velocity versus net to gross.

The P-wave velocity for weak anisotropy is given as
(Thomsen, 1986):

\[\alpha(\theta) = \alpha_i \left(1 + \delta \sin^2 \theta \cos^2 \theta + \varepsilon \sin \theta \right), \quad (2) \]

where \(\theta \) is the angle between the wavefront normal and
the normal to the bedding. The relative P-wave velocity as
a function of \(\theta \) is shown in Figure 9, assuming 10% clay
within the halite.

Shear wave anisotropy

The anisotropy parameter \(\delta \) introduced by Thomsen (1986) is

\[\delta = \frac{(c_{33} + c_{44})^2 - (c_{33} - c_{44})^2}{2c_{33}(c_{33} - c_{44})}, \quad (3) \]

where (Stovas et al., 2006)

\[c_{33} = c_{33,1} \frac{1 - 2\gamma_i^2}{1 - \frac{\kappa\Delta c_{33}}{1 + \frac{1}{2}\Delta c_{33}}}, \quad c_{44} = c_{44,1} \frac{1 - \kappa\Delta c_{44}}{1 + \frac{1}{2}\Delta c_{44}}. \]

<table>
<thead>
<tr>
<th>Clay (component 1)</th>
<th>2500</th>
<th>1000</th>
<th>2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halite (component 2)</td>
<td>4500</td>
<td>2500</td>
<td>2100</td>
</tr>
</tbody>
</table>

Table 1 Seismic parameters for clay and halite used in the anisotropic analysis.
Figure 10 shows ε and δ as functions of net to gross ratio. The S-wave velocity for the SV-mode is given as a function of angle θ as (Thomsen, 1986):

$$\beta(\theta) = \beta_v [1 + (\varepsilon - \delta) \frac{\alpha^2}{\beta_c^2} \sin^2 \theta \cos^2 \theta]. \quad (4)$$

Assuming a net to gross of 10%, $\varepsilon - \delta = 0.08$. Using this value in Equation (4) gives a shear wave (SV mode) velocity variation as shown in Figure 11. For simplicity, we have assumed that the vertical P-wave and S-wave velocities are equal to the values for salt given in Table 1.

Shear zones within the salt

Figure 12 is a photograph from inside the salt mine which shows the transition from a laminar pattern via folding to a more chaotic zone which we interpret as a shear zone. The width of this shear zone is 1–2 m, and the central part of it is recrystallized in some areas. Figure 13 is a photograph of the salt outcrop outside the mine, and the possible location of the shear zone has been interpreted on this picture. Such shear zones, which may be several metres thick, could introduce velocity variations within a salt body that influence the quality of seismic imaging. An outstanding question is whether these shear zones are created by the presence of the clay, or whether they can also exist in apparently homogeneous halite. This issue requires further investigation.

Discussion and conclusions

The presence of clay in a salt diapir leads to anisotropic seismic properties. Based on field observations from the Cardona salt mine, we estimate that for this particular salt diapir the anisotropy is moderate, but not negligible. Assuming the clay to halite ratio is 10%, the difference in
P-wave velocities parallel and perpendicular to the bedding is 5%. Such anisotropic velocity variations may be important to include in seismic migration, and may lead to improved definition of the salt body. Furthermore, the presence of clay within salt may change the plastic behaviour of the salt and introduce shear zones within the salt. Such phenomena may create velocity heterogeneities on a larger scale than the clay-halite layering discussed above. Based on observations from the salt in Cardona, it is obvious that it is a huge simplification to treat salt as a homogeneous body with a constant velocity.

Acknowledgements
We thank Statoil for financial support, and especially Bjørn Rasmussen and Ragnar Knarud for initiating the field course in the Pyrenees. We are also indebted to Josep Munoz for discussions and for introducing us to the Cardona salt mine. We also thank the Norwegian Research Council for financial support to the ROSE (Rock Seismic) consortium at NTNU, and the reviewer for constructive comments.

References

Received 31 January 2011; accepted 16 May 2011.
doi: 10.3997/1365-2397.2011022