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Summary 

Seismic interferometry (SI) is usually implemented by 
crosscorrelation (CC) to retrieve the impulse response 
between pairs of receiver positions. An alternative 
approach by multidimensional deconvolution (MDD) 
has been developed and shown in various studies the 
potential to suppress artifacts due to irregular source 
distribution and intrinsic loss. Following previous 
theories on SI by MDD, we extend it to retrieve the 
impulse response between pairs of source positions by 
invoking source and receiver reciprocity.  We verify the 
theory using a simple two-layered model and show that 
the retrieved response by MDD is more accurate than 
that by CC, and furthermore, it is free of free-surface 
multiples. We discuss the necessary pre-processing 
required for this method. This inter-source SI approach 
creates a virtual acquisition geometry with both borehole 
sources and receivers without the need to deploy 
receivers in the borehole, which might be of interest to 
applications such as seismic while drilling (SWD). 

  

Introduction 

Seismic interferometry, also called “Green’s function 
retrieval”, refers to the general idea of retrieving the 
impulse response between two positions by processing 
the seismic responses measured between those two 
positions and the positions on the surrounding surface. 
When the new response is retrieved between two 
receiver positions, it is called inter-receiver SI. When the 
new response is retrieved between two source positions, 
it is called inter-source SI. While it is more common to 
use inter-receiver SI to create a virtual source at one of 
the physical receiver positions (Snieder, 2004, Schuster 
et al. 2004, Bakulin and Calvert 2006), it is sometimes 
also useful to turn a physical source into a virtual 
receiver. Curtis et al. (2009) applied the inter-source SI 
by CC to turn earthquakes into virtual seismometers.  

SI is typically implemented by CC. Wapenaar and 
Fokkema (2006) derived the exact forms of SI by CC for 
both lossless acoustic and elastodynamic media. In order 
to simplify the exact formulas for a more straightforward 
implementation, they also showed the necessary 
approximations and assumptions involved. As a result, 

although robust and simple, SI by CC in practice usually 
produces some spurious events in the retrieved response. 
A detailed analysis of those events is provided in Snieder 
et al. (2006). Alternatively, SI by MDD has the potential 
of correcting for a non-ideal source distribution and 
intrinsic losses by deblurring the correlation function by 
the interferomeric point-spread function (van der Neut 
and Bakulin 2009, van der Neut et al. 2011). Wapenaar 
et al. (2011) derived a form of inter-receiver SI by MDD 
for receivers in the subsurface and sources on the surface. 
We show that by invoking source and receiver 
reciprocity, one can obtain a similar form of inter-source 
SI by MDD to create a virtual acquisition geometry 
corresponding to borehole sources and receivers. We 
demonstrate the derivation by a numerical example and 
discuss the possible application limitations. 

 

Theory 

We start from Rayleigh’s reciprocity theorem in 
equation.  
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Capital letters indicate frequency domain. The subscripts 
A and B denote the state. Because multiplication in the 
frequency domain corresponds to convolution in the time 
domain, this is a reciprocity theorem of the convolution 
type (Wapenaar and Fokkema, 2006). Here P is the 
acoustic pressure, Vi the particle velocity in the i-th 
direction, Fi the external volume force density in the i-th 
direction, Q the volume injection rate density. An 
illustration of the two states A and B is given in Figure 1. 
The spatial domain D is enclosed by the surface D , 
which includes the receiver surface ∂D0 and extends 
downward into the subsurface.  State A resembles the 
physical experiment and state B coincides with the 
physical medium inside D but is homogeneous outside. 
In Figure 1, xS is the source position, and xR and x are 
the receiver positions. The mathematical expressions for 
the terms in both states are shown in equation. 



Figure 1. The configuration of state A and B for inter-receiver SI by 

MDD. The dotted line describes the surface boundary D enclosing 

volume D  and ∂D0 is the virtual receiver surface. The orange circle 
denotes the virtual source. The star denotes source and the triangle 
denotes receiver. 
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We follow the derivation in Wapenaar et al. (2011) by 
separating the wavefield at D into outgoing and 
incoming components, and approximating the normal 
derivative of the wavefield in the high frequency regime 
by multiplying each component with a pseudo-
differential operator jH , where the minus-sign applies 
to outgoing waves, plus-sign to incoming waves. 
Because it is homogeneous outside D, ( | )

R
G x x is 

outgoing at x and further we can use
( | ) ( | )

R R
G Gx x x x . Substituting the expressions in 

 into equation, using the pseudo-differential operator 
to approximate the derivatives, and applying 
Sommerfield radiation condition gives 
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Considering only the outgoing part of the field at xR and 
applying decomposition at both sides of equation  
gives 
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where ( | )out

d R
G x x  is called the dipole Green’s 

function. It corresponds to a dipole source at x and the 
field of this source observed at xR is outgoing. 
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In equation, Pout(xR|xS) denotes the waves propagating 
outward at xR from xS and Pin(x|xS) is the waves 
propagating inward at x from xS. By invoking source and 
receiver reciprocity, it follows 
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where Pin(xS|xR) denotes the waves propagating inward 
from xR to xS and Pout(xS|x) denotes the waves 
propagating outward from x to xS. We see that both 
Pout(xR|xS) and Pin(xS|xR) are the waves that are last 
reflected from inside D and Pin(x|xS) and Pout(xS|x) are 
the direct waves and the  waves last reflected from 
outside D by, for example, the free surface. 
Substituting these two expressions into equation and 
rewriting it in a matrix form following the same 
convention in Wapenaar et al. (2008), we have  

( | ) = ( | ) ( | )in out out

S R S d R
P P Gx x x x x x    

To make the formula more intuitive, xR is renamed as xS’ 
and xS is renamed as xR’, then equation becomes   

' ' ' '
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R S R d S
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where Pin(xR’|xS’) denotes the waves propagating inward 
from xS’ to xR’ and Pout(xR’|x) denotes the waves 
propagating outward from x to xR’.  The corresponding 
notation in both states is shown in Figure 2, where one 
of the sources is turned into a virtual receiver. 

Figure 2. Configurations of state A and B for inter-source SI by MDD. 
The dotted line describes the boundary D enclosing the volume, D  and 
∂D0 is the virtual receiver surface. The orange circle denotes the virtual 
receiver. The star denotes source and the triangle denotes receiver. 

The unknown Green’s function between two source 
positions can be estimated with a standard Damped 
Least Square approach (Menke, 1989) 

† 2 1 †( )out out out out in

d
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 where † denotes conjugate transpose and 2 is the 
damping factor to control the model smoothness. The 
inversion is carried out for each frequency, and then the 
result is inverse Fourier transformed back to time. 



According to the description of Pin(xR’|xS’) and Pout(xR’|x), 
the first term includes the multiples that propagate 
inward from xS’ and the second term includes the 
multiples that propagate outward from x. In the absence 
of multiples, equation  can be written as 

' ' ' '
( | ) = ( | ) ( )|out

R S R d Ss dP P Gx x x x x x   

where Ps denotes the primary reflected waves and Pd the 
direct waves. 

 

Numerical example 

To illustrate the theory, a simple 2D two-layered model, 
shown in Figure 3a, is used. We used 51 shots (only 17 
are shown) distributed with an average spacing Δx=30 m 
along a modeled drilling trajectory. 101 receivers (only 
25 are shown) are evenly placed with a spacing Δx=25 
m at the depth z=5 m. The source is modeled with a 
Ricker wavelet of a central frequency of 15 Hz. The 
modeled acoustic pressure field and the vertical velocity 
field are computed using an acoustic Finite Difference 
scheme. Figure 3b shows an example of a shot gather 
with a sampling interval of 2 ms. The total recording 
time is 4 s. Because of the simplicity of the model used, 
the direct wave (noted by the orange dashed line) and the 
primary reflected wave (noted by the green dashed line) 
can be easily separated from the multiples (noted by the 
purple dashed line) by time-windowing in this example.  

Next we apply the inter-source SI using MDD according 
to equation  by first Fourier transforming the separated 
direct waves and primary reflected waves into the 
frequency domain, then sorting the data into the matrix 
form, Ps(xR’|xS’) and Pd(xR’|x), where each column 
accommodates a fixed source position and variable 
receiver positions for a given frequency. The dipole 
Green’s function is estimated by using equation.  
Inverse Fourier transforming back to time gives the 
virtual responses that would be recorded at the source 
positions. Figure 4d shows an example of the virtual shot 
gathers.  

In order to demonstrate the effect of not separating the 
outgoing and incoming multiples for use in the term 
Pin(xR’|xS’) and Pout(xR’|x), we then used the direct waves 
for the first term, the primaries and all multiples for the 
second term in equation . An example of the virtual 
shot gathers retrieved in this case is shown Figure 4c. 

To compare, the reference response and the virtual 
response retrieved by the common CC approach are also 
computed. The reference response, shown in Figure 4a, 
is the directly modeled vertical velocity field (direct 
arrivals removed) that are recorded at the source 
positions (the virtual receivers) due to the source at 
x=1370 m. For the CC approach, the virtual response 
Vz(xB|xA) is computed by crosscorrelating the vertical 
velocity field Vz(xA|x) and V*

z(xB|x)  for all sources x 
and then summing the result. Repeat this for all the 
source and virtual receiver pair. By taking the causal part 
of the result and applying an overall scaling factor to all 
traces, we obtain the response shown in Figure 4b. 

Figure 5 shows a trace by trace comparison for every 
fifth of the retrieved responses. One should note that the 
retrieved response by CC has the effect from a free 
surface while the result by MDD is the wavefield that 
would be observed if the medium outside the volume D 
is homogeneous. Overall, we observe that the arrival 
time, waveform and amplitude match between the 
reference response and the retrieved response is the best 
for MDD without multiples, which is tailored exactly 
according to the theory.  

       

          
Figure 3. a) The P wave velocity model. The red stars denote 
the sources and the blue triangles denote the receivers. Every 
third sources and every fourth receivers are drawn.  b) The shot 
gather of source at x=1370 m.  

 

Conclusions 

By applying source and receiver reciprocity, we extend 
the method by Wapenaar et al. (2011) to turn sources in 
the subsurface into virtual receivers by using a 
multidimensional deconvolution (MDD) approach. This 
creates a virtual acquisition geometry with both sources 
and receivers in the subsurface. We tested the formula 
by a numerical example and compare the result against 
the crosscorrelation (CC) approach. The retrieved 
response by MDD matches well in terms of arrival time, 
waveform and amplitude with the directly modeled 
reference response. We find that by only using the direct 
wave and the primary reflected wave when they can be 
separated from the multiples result in a more accurate 
result. If all events should be used in this method, a 
separation of incoming and outgoing multiples at the 
sources needs to be considered. 



Figure 4. Shot gathers  of the retrieved responses and the reference response. a) The modeled reference response of a source at x=1370 m. The direct arrivals 
are removed. b) The response obtained by CC. c) The response obtained by MDD when the multiples are not separated in the input. d) The response obtained 
by MDD when only the direct wave and the primary reflected wave are used as input.  

Figure 5. Comparison of the retrieved responses with the reference response. a) Result of interferometry by CC (red traces) compared with the directly modeled 
referense response (blue traces). Every third traces are plotted. b) Result of inter-source SI by MDD when multiplesare not separated. c) Result of inter-source 
SI by MDD without multiples. 
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