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3D Anisotropic Depth Migration Operators for
Marine Controlled-Source Electromagnetic Data

K. Hokstad* (Statoil Research Centre), T. Rgsten (Statoil Research Centre)
& B. Arntsen (Statoil Research Centre)

SUMMARY

We present frequency-wavenumber (FK) and explicit finite-difference (FD) operators for 3-D anisotropic
depth migration of controlled-source electromagnetic (CSEM) data in transversely isotropic (TI) media. A
requirement for the applicability of the proposed one-way migration operators is separation of the CSEM
data into up-going and down-going, transverse electric (TE) and transverse magnetic (TM) modes.
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Introduction

CSEM data are now widely accepted as a useful tool for hydrocarbon exploration. In
general, the measured (total-field) CSEM data can be separated into transverse electric
(TE) and transverse magnetic (TM) modes, which carry complementary information
about geophysical and geological properties of the earth. The TE mode is mainly sen-
sitive to near-surface and overburden properties, whereas the TM mode carries infor-
mation about high-resistive anomalies (e.g. hydrocarbon accumulations). Also, the TE
and TM modes react differently to anisotropic conductivity which is frequently observed
in a stratified subsurface (Lgseth and Ursin, 2007).

Based on well-known ideas from seismic imaging (Claerbout, 1985), Zhdanov et al.
(1996) introduced frequency-wavenumber (FK) and finite-difference (FD) depth migra-
tion methods for CSEM data. Hokstad and Rgsten (2006) extended their work for 2D
migration in transversely isotropic (TI) media. Rgsten et al. (2006) presented isotropic
explicit one-way 3-D FD migration operators for CSEM data, using the approach ap-
plied to seismic depth migration by Holberg (1988). Here, we extend this scheme to
include anisotropy. We present 3-D FK and FD depth migration operators for up-going
and down-going, TE and TM fields in TI background conductivity models.

Two-way diffusive wave equations

In the ultra-low frequency approximation, neglecting displacement currents, the Faraday
and Ampere equations in the frequency domain can be approximated by

VXE = iwpH, and V x H=J", (1)

where E is the electric field, H is the magnetic field, pg is the vacuum permeability, and
w is the angular frequency. Without external sources, the current density J¥ in a linear
anisotropic medium is given by Ohm’s law

JF = 0,,E; (2)
where o;; is the conductivity tensor. Combining the equations above to eliminate the
magnetic field, we obtain the two-way diffusive wave equation

8j8jEi — 8i8jEj + iwuoaijEj = 0. (3)

We assume that the medium is smooth, such that the spatial derivatives of the con-
ductivity can be neglected. This is justified by the fact that our goal is to perform
migration, where we propagate the electric field in a smooth background medium.

In the isotropic case 0;£; = 0, and equation (3) reduces to the scalar diffusive Helmholz
equation for each component separately. This does not hold in the anisotropic case.
However, from Ampere’s law (with zero external source current), we obtain

O, JE = 8i04;B; = 0, (4)

since the divergence of a curl is identically zero. The conductivity tensor in a TT medium
can be written as
a1
o= o1 , (5)

03

where 01 and o3 are the horizontal and vertical conductivities, respectively. Substituting
the TT conductivity tensor above in equation (4), the divergence of the electric field can
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be expressed in two alternative ways which both will be used below,

azEz = _2n(amEm+ayEy)7 (6)
_ 2
OB = 2-o.. )

where the electromagnetic anisotropy parameter

01— 0O
n=——, (8)

204

is analogous to the Thomsen parameters ¢ and 7 in the seismic case. Substituting
equation (6) for the divergence in equation (3), we obtain two coupled two-way equations
for the horizontal components of the electric field

(1+ 2005 By + 0, By + 02 By + 20,0, Ey + 57E, = 0, 9)
O2Ey + (L+20)0; By + 0, Ey + 200, 0,Ey + k1B, = 0, (10)

where k1 = /iwpgor is the complex wavenumber. Returning to equation (3), and
using equation (7) to eliminate the divergence of the electric field, we obtain a separate
two-way equation for the vertical component

(1+20)(02E, + O.E.) + O2E. + k1 E, = 0. (11)
Plane-wave analysis

In the Fourier domain, equations (9) to (11) can be expressed as a 3 x 3 eigenvalue
problem,

@ —2nk2  —2nkyk, 0 E, E,
—2nkyky  q* — 20k’ 0 E,| = K| E |, (12
0 0 ¢ — 2n(k3 + k) E, E,

where ¢ = k? — k2 — k; The sign convention in the Fourier transform is such that
0y ++ —iw and J; < ik;. Solving the characteristic equation, we find three pairs of
eigenvalues

BO &6 — (B2 +K2), and K2 =k = £\/6? — (1 +20) (k2 +k2), (1)

z

where the positive and negative signs correspond to down-going and up-going plane
waves, respectively. The three corresponding orthogonal and normalized eigenvectors
can be written as

2V =—| k | and 2@ ="1|k, | and 2 =0 |, (14)
ky 0 ke 0 1

where k; =, /kZ + k2 is the radial horizontal wavenumber.

Consider a plane wave propagating with wavenumber k = (k;, ky, k). From equation
14 it is clear that (1) is confined to the horizontal plane and that k- ) = 0. Hence,
the eigenvector (1) corresponds to the TE mode with vertical wavenumber l{:gl). The
cigenvectors £ and x® belong to the degenerate eigenvalues kg2) = k§3). Then,
any linear combination y = az® + Sz is also an eigenvector with the same pair of
eigenvalues. Since y - (1) = 0 we conclude that 22 and £®) form an orthogonal basis

for the TM mode with vertical wavenumber k?) = kgs).
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3-D anisotropic depth migration operators

In a 1-D background medium, standard one-way equations in the F K domain for the
down-going field EP and migrated field EM (Zhdanov et al., 1996) are obtained as

8,E" = vk, E, (15)

where the vertical wavenumber k, for the TE and TM modes is obtained from equation
(13) as

k1P = \/H% +92(k2 +k2), and kIM = \/H% + 21+ 2m) (k2 + K2),  (16)

where v =i for v = D and v = —1 for v = M. The solution to equation (15) is given
by
EY (g, kyy 2 + Az, w) = 2R EBY (ky by, 2,w), (17)

which is the basis for the wavefield extrapolation step of (Gazdag) F'K migration.

The depth-stepping equation for EZM is numerically stable with exponential decay (like
EP) and backward phase rotation (like EV).

The F'K migration operators are accurate up to 90 degrees from the vertical, but limited
to 1-D background media. To relax the 1-D background assumption, we replace the
phase-shift operator in equation (17) by discrete convolution filters in the FX domain,
as proposed by Holberg (1988). The extrapolation of the electric field can be written as

L
EY(z,y,z + Az,w) = Y [WY(mAz,nly, ki, 0B (z — mAz,y —nly, z,w)]. (18)

m,n=—L

The convolution operators W depend only on the normalized wavenumber &y = xoAz,
the anisotropy parameter n and the ratio Az/Az. Hence, for a given Az/Az-ratio, the
operator coefficients can be precomputed for all relevant values of &y and n and stored
in a look-up table. Computation of the finite impulse-response filter with complex-
valued coefficients WY (mAz,nAy, k1,7n), is posed as an inverse problem, minimizing
the objective function in the L4 norm

J = ||[WY(iAky, jAky, ko, n) — e727F=| |4, 19
Yy

where WY (iAky, jAky, ko, n) is the discrete Fourier transform of W*(mAxz,nAy, ko,n)
for a discrete set of horizontal wavenumbers 1Ak, and jAEK,. The dispersion relation for
diffusive EM fields is smooth and continuous for all wavenumbers. Hence, different from
the seismic case, we do not need to introduce a dip-limitation on the corresponding 3-D
filter operators to get a stable depth migration scheme for CSEM data. The optimization
is generally performed for all wavenumbers, and the real and imaginary part of the filter
operator are optimized separately. In practice, we need to compute tabulated filter
coefficients only for W;”. Then the operator for WM can be obtained by complex
conjugation.

Numerical example

To demonstrate the 3-D anisotropic £ K and F D migration operators presented above,
we propagate the xz-component of an electric Hertz dipole oriented in the z-direction.
The frequency of the dipole is 0.75 Hz. The background medium is homogeneous with
horizontal conductivity o1 = 1.0S/m and anisotropy parameter n = 0.5. The dipole
field was computed analytically at 500 m depth below the source, and then propagated
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numerically from 500 m to 5000 m. The grid spacing was Az = Ay = 100m and Az =
50m. Figure 1 shows the phase of the isotropic 3-D FK operator and the anisotropic
3-D FK and FD operators for the TM mode. The effect of anisotropy can be noticed
from the lateral stretch of the constant-phase surfaces.

X (km) X (km) X (km)
2 1 -0 1 2 2 1 -0 1 2 2 1 -0 1 2

Figure 1: Phase (in units of 7) of the impulse responses of the isotropic FK operator
(left) anisotropic FK operator (center) and anisotropic explicit FD operator (right).

Conclusions

We have presented 3-D FK and explicit 3-D F D operators for depth migration of TE
and TM modes in TI background conductivity models. The migration operators were
demonstrated by numerical downward extrapolation of the field of a horizontal electric
dipole. The TE and TM modes react differently to anisotropic conductivity, and should
be propagated with different operators.
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