The influence of anisotropy on elastic full-waveform inversion

Tore S. Bergslid, Espen Birger Raknes and Børge Arntsen

Norwegian University of Science and Technology (NTNU)
Department of Petroleum Engineering & Applied Geophysics
E-mail: tore.bergslid@ntnu.no

Trondheim
April 28th 2015
Outline

Introduction

Theory

Model and survey setup

Results

Conclusions

Acknowledgments
• Recently implemented anisotropic (VTI) modeling and FWI.
• Test code on different assumptions used in FWI.
• For synthetic data that are both elastic and anisotropic, investigate quality of inverted V_{P0} model for:
 • Acoustic vs. elastic
 • Isotropic vs. anisotropic
• Try to invert for Thomsen anisotropy parameters ε and δ.
Theory

- In FWI we want to find a parameter model m that can produce modeled data u which is close to some measured data d.
- Apply a numerical wave operator that maps m from the model domain into the data domain:
 \[
 \mathcal{L}(m) = u. \tag{1}
 \]

- Ideally, find an inverse operator to map d from the data domain to the model domain:
 \[
 m = \mathcal{L}^{-1}(d). \tag{2}
 \]
Theory

- Define a misfit functional:
 \[
 F(m) = \frac{1}{2} \sum_{j=0}^{n_s} \sum_{i=0}^{n_r} ||\hat{u}_{i,j}(m) - \hat{d}_{i,j}||_2^2. \tag{3}
 \]

- The solution is an extreme point of \(F(m) \):
 \[
 m' = \arg \min_m F(m). \tag{4}
 \]
Theory

• Update the model iteratively:

\[m_{k+1} = m_k - \alpha_k H_k^{-1} \delta m_k. \] \hspace{1cm} (5)

• Hessian matrix contains second derivatives of the misfit functional
 • Approximated from previous gradients (L-BFGS)
 • Gradients are found via the adjoint method, Mora (1987).

\[\delta \hat{m}(x) = \sum_{n_s} \int dt \sum_{n_r} \frac{\partial u_i(x_S, x_R, t)}{\partial m(x)} \delta u_i(x_S, x_R, t). \] \hspace{1cm} (6)

\[\delta u_i(x_S, x_R, t) = \int_V dV \frac{\partial u_i(x_S, x_R, t)}{\partial m(x)} \delta m(x). \] \hspace{1cm} (7)
Gradients

\[\delta \rho = - \sum_{n_s} \int dt \dot{u}_j \dot{\Psi}_j, \]

\[\delta c_{11} = - \sum_{n_s} \int dt (u_{1,1} + u_{2,2})(\Psi_{1,1} + \Psi_{2,2}), \]

\[\delta c_{33} = - \sum_{n_s} \int dt u_{3,3} \Psi_{3,3}, \]

\[\delta c_{13} = - \sum_{n_s} \int dt \left[\Psi_{3,3}(u_{1,1} + u_{2,2}) + (\Psi_{1,1} + \Psi_{2,2})u_{3,3} \right], \]

\[\delta c_{44} = - \sum_{n_s} \int dt \left[(\Psi_{3,1} + \Psi_{1,3})(u_{3,1} + u_{1,3}) + (\Psi_{3,2} + \Psi_{2,3})(u_{3,2} + u_{2,3}) \right], \]

\[\delta c_{66} = - \sum_{n_s} \int dt \left[(\Psi_{2,1} + \Psi_{1,2})(u_{2,1} + u_{1,2}) - 2(\Psi_{2,2}u_{1,1} + \Psi_{1,1}u_{2,2}) \right]. \]
Model

- Synthetic model representative of the Gullfaks field
- 10 km long, 3 km deep
- 1001×300 grid points
- Total of 101 shots and 1001 receivers
- Source: 5 Hz Ricker wavelet
- Receivers: Pressure
- Gradient muted in the water layer
Model
Starting model

![Graph showing the starting model with coordinates and values for x (m), z (m), and VP₀ (m/s).]
Starting model
Figure: Inverted model for V_{P0} with exact ε and δ, elastic.
Figure: Inverted model for V_{P0} with exact ε and δ, acoustic.
Elastic inversion

x (m)

z (m)

V_{P0} (m/s)
Results

Figure: Inverted model for V_{P0} with smooth ε and δ
Figure: Inverted model for V_{P0} with $\varepsilon = \delta = 0$, elastic
Figure: Inverted model for V_{P0} with $\epsilon = \delta = 0$, acoustic.
Results

Figure: Inverted model for ε.
Starting model
True model

![Graph](image-url)
Inverted model
Results

Figure: Inverted model for δ.
Conclusions

- Four different inversion assumptions applied to an elastic, anisotropic dataset.
- Acoustic approximation holds, due to long offset data.
- Anisotropy cannot be completely neglected.
- A perfect anisotropy model is not needed, but some knowledge is necessary.
- Inverting for ε and δ is in principle possible.
Acknowledgments

We thank the ROSE consortium and their sponsors for support.