Validity of the long-wave approximation in layered media

Børge Arntsen*, Statoil

Summary

Wave velocities in a periodically layered medium composed of two different layer types change with scale as the propagation of waves depends strongly on the ratio of the dominant wavelength to layer thickness. The present work attempts to establish a minimum ratio of wavelength to layer spacing for which the long-wave approximation is valid. Analysis of the dispersion relation reveals that the minimum ratio depends on the reflection coefficient and the ratio of travel times through the two layer types. It is found that, depending on the reflection coefficient, the minimum value of the ratio of the dominant wavelength to layer spacing can be as large as approximately 13 and as low as approximately 3.

Introduction

Reservoir characterization requires imaging of heterogeneities in sedimentary rocks such as layering, variation in lithology and pore fluid properties. In general this involves integration of measurements at many different scales. For example is correlation of seismic data with acoustic logs crucial for geologic interpretation and involves relating measurements of wave velocities at a scale of tens of meters with measurements of velocities at a scale of centimeters.

Wave velocities in, for example a periodically layered medium change with scale as the propagation of waves depends strongly on the ratio of the dominant wavelength, \(\lambda_0 \), to layer thickness, \(d \). When \(\lambda_0/d \) is large, the wave velocity is given by an average of the properties of the individual layers and waves behave as if propagating in an effective anisotropic homogeneous medium (Helbig 1984). On the other hand, when \(\lambda_0/d \) is small, waves can be described using rays with wave velocities that are larger than for the effective medium. For intermediate values of \(\lambda_0/d \) waves are in general dispersive and the velocity changes rapidly with frequency (Marion et al. 1994).

Several workers have tried to establish a minimum value of the dominant wavelength to layer spacing, \(\lambda_0/d \), at which wave can be treated as if propagating in an anisotropic effective medium. Values ranging from 3 (Helbig 1984) to 5-8 (Carcione et al. 1991) to 15 (Marion et al. 1994) have been found.

The minimum value of \(\lambda_0/d \) at which wave propagation in a periodically layered medium can be approximated with wave propagation in an anisotropic homogeneous medium is thus still unclear, and it seems worthwhile to find a relation between \(\lambda_0/d \) and the properties of the medium explaining the apparent different results reached by different authors. To avoid the complications of elastic wave propagation this work is limited to wave propagation normal to the layering of the medium. The medium can then be treated as purely acoustic. Although the anisotropy of the effective medium is an important effect, it will not be further discussed.

In the following section I review wave propagation in a two-component periodically layered medium. I then derive a relation between \(\lambda_0/d \), the reflection coefficient of the periodic layered medium and the ratio of travel times through each of the two different layer types. In the section on numerical results the formula for \(\lambda_0/d \) is verified with numerical simulations and with laboratory measurements reported in the literature. The formula reveals that the minimum value of \(\lambda_0/d \) depends on the wave component number; the reflection coefficient \(r \) and the ratio of travel times \(\tau_2/\tau_1 \) through the two different constituents of the medium. An upper limit of the minimum value of \(\lambda_0/d \) is also found.

Theory

I consider a horizontally plane layered periodic medium composed by stacking together one layer characterized by wave velocity \(c_1 \), density \(\rho_1 \) and thickness \(d_1 \) with another layer characterized by wave velocity \(c_2 \), density \(\rho_2 \) and thickness \(d_2 \) repeatedly. Considering only vertical incidence, the relation between the frequency dependent wave velocity \(C \) and the properties of the medium is expressed in the dispersion relation

\[
\cos(\omega d/C) = \cos(\omega \tau_1 + \omega \tau_2) - \frac{\rho_2^2}{1 - r^2} \sin(\omega \tau_1) \sin(\omega \tau_2). \tag{1}
\]

Here \(\omega \) is the frequency, \(d = d_1 + d_2 \) is the thickness of one period of the medium and \(\tau_1 \) and \(\tau_2 \) are vertical travel times defined by \(\tau_1 = d_1/c_1 \) and \(\tau_2 = d_2/c_2 \). \(r \) is the reflection coefficient given by

\[
r = \frac{Z_1 - Z_2}{Z_1 + Z_2}, \tag{2}
\]

where the impedance \(Z_i \) is equal to by \(Z_i = \rho_i c_i \), \(i = 1, 2 \). For sufficiently large wave length, \(\lambda_0/d \approx 2\pi C_0/(\omega d) \), wave propagation through the periodic layered medium can be approximated with wave propagation through an effective, homogeneous medium with wave velocity \(C_0 \) equal to (the long-wave approximation)

\[
\frac{1}{C_0^2} = \frac{1}{d^2} \left[(\tau_1 + \tau_2)^2 + \frac{4\rho_2^2}{1 - r^2} \tau_1 \tau_2 \right]. \tag{3}
\]

The objective is now to try to determine a value of \(\lambda_0/d \) above which the medium must be regarded as a truly

\[
\text{SEG 1999 Expanded Abstracts}
\]
layered medium and below the medium can be regarded as a homogeneous medium with wave velocity given by the average defined by equation (3). This is done by introducing the error \(\epsilon \)

\[
\epsilon = \frac{C_0 - C(\omega)}{C_0}
\]

where \(C_0 \) measures the relative difference between the velocity \(C(\omega) \) in the long-wave approximation and the velocity \(C(\omega) \) for a given finite frequency. By Taylor-expanding the dispersion relation given by equation (1) to fourth order it is possible to express \(\lambda_0/d \) as a function of \(\epsilon \)

\[
\lambda_0/d = \frac{\pi}{\sqrt{\beta}} \left(\frac{(1 - \epsilon)^{-4} - \beta}{(1 - \epsilon)^{-2} - 1} \right).
\]

Here the function \(\beta \) is given by

\[
\beta = \frac{\left(1 + \tau_2/\tau_1\right)^4 + \left(\frac{\tau_2}{\tau_1}\right) \cdot \left(\frac{\tau_2}{\tau_1}\right)^3}{\left[1 + \tau_2/\tau_1\right]^2 + \left(\frac{\tau_2}{\tau_1}\right)^2 \cdot \left(\frac{\tau_2}{\tau_1}\right)^2}.
\]

Equation (5) can now be used to define a value for \(\lambda_0/d \) at which the relative difference between the frequency dependent velocity \(C \) and the velocity in the long-wave approximation is less than a given limit equal to \(\epsilon \).

Since equation (5) is based on a fourth order Taylor-expansion it could be reasonable to question its validity for small values of \(\lambda_0/d \). Numerical checks show that equation (5) is a good approximation whenever \(\lambda_0/d > 3 - 4 \).

From equation (5) it is immediately seen that \(\lambda_0/d \) depends on the ratio of the vertical travel times \(\tau_1 \) and \(\tau_2 \) through the two layer types and the reflection coefficient \(r \).

Numerical Results

As an application of the formula given by equation (5) the laboratory experiment described by Marion et al. (1994) is considered. The model they used consisted of alternating layers of plastic and steel. The model given in table 1 defines a model similar to the one used by Marion et al. (1994), only the thickness of the layers are slightly changed. Figure 1 shows how \(R = \lambda_0/d \) for

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Velocity (m/s)</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0005</td>
<td>2487</td>
<td>1210</td>
</tr>
<tr>
<td>0.00100</td>
<td>5535</td>
<td>7900</td>
</tr>
</tbody>
</table>

Table 1: Material properties of periodic layered plastic-steel medium

the model defined in table 1 computed as a function of \(\epsilon = \frac{C_0 - C(\omega)}{C_0} \) using equation (5). From figure 1 it is evident that the value of \(\lambda_0/d \) is relatively insensitive to the value of \(\epsilon \) when \(\epsilon \) is larger than 0.01-0.02. However, when \(\epsilon \) is smaller than approximately 0.01, \(\lambda_0/d \) rapidly increases as \(\epsilon \) decreases. In the limit when \(\epsilon \) approaches zero, \(\lambda_0/d \) will approach infinity. This is entirely reasonable since \(C \) and \(C_0 \) is equal only for infinite wavelength (or zero frequency). It seems clear that equation (5) indicates that at a value of \(\lambda_0/d \) equal to approximately 11.0 (\(\epsilon = 0.01 \)), the periodic layered medium could be treated as a homogeneous medium with velocity and density given by averages.

In order to verify equation (5) numerical simulations were performed using a finite-difference scheme employing optimized spatial differentiators and a second-order time integration method. The scheme is described by Holberg (1987). Figure 2 shows the result of a numerical simulation with the source peak frequency corresponding to \(\lambda_0/d = 11.0 \) plotted with a thin line. The solid line shows the result of a corresponding numerical simulation where the periodic layered medium was substituted with a completely homogeneous medium with wave velocity given by the average defined in equation (3). Although there are differences between the two waveforms, it is a reasonably good verification of equation (5).

In figure 3 a semblance measure has been used to compare additional simulations for the model defined in table 1 with simulations for the corresponding homogeneous model using a range of source peak frequencies corresponding to \(\lambda_0/d \) values from 4.0 to 20.0. Figure 3 shows that the semblance value at \(\lambda_0/d = 11.0 \) is slightly less than 1.0, becoming almost equal to 1.0 at \(\lambda_0/d \) approximately equal to 15. The main conclusion from the laboratory measurements made by Marion et al. (1994) is that the transition from short- to long-wave propagation behavior occurs between \(\lambda_0/d = 8 \) and \(\lambda_0/d = 15 \). This coincides reasonably well with the prediction using equation (5).

Figure 4 shows the result of using equation (5) to predict the minimum value of \(\lambda_0/d \) required to make wave propagation through a periodic layered medium behave approximately as propagation through a homogeneous medium as a function of volume fraction of steel.

The volume fraction of steel is simply defined by \(d_2/d \). Here the reflection coefficient has been kept constant and \(\epsilon = 0.01 \). The input to the calculation is the model defined in table 1 with different relative layer thicknesses. From figure 4 it is seen that the minimum value of \(\lambda_0/d \) does not depend strongly on the volume fraction of plastic, except for the extreme values of either very small or very large fraction of plastic. The peak value of the minimum value of \(\lambda_0/d \) seems to be approximately located at a volume fraction of 0.7. The conclusion from the laboratory measurements of Marion et al. confirms this result, as they found that the minimum value of \(\lambda_0/d \) w as almost independent of the volume fraction of plastic, except for the extreme values. They also found that the minimum value of \(\lambda_0/d \) was slightly larger for the midrange of compositions.
Validity of long-wave approximation

Discussion and conclusions

From the numerical results in the preceding section it should be clear that the minimum value of \(\lambda_0/d \) required to make wave propagation through a periodic layered medium behave approximately as wave propagation through an equivalent homogeneous medium is dependent upon the reflection coefficient \(r \) and the ratio of the travel times \(\tau_2 \) and \(\tau_1 \). The minimum value of \(\lambda_0/d \) is to a good approximation given by equation (5).

Equation (5) can be used to explain the seemingly different results obtained previously for example by Helbig (1984), who found that the minimum value of \(\lambda_0/d \) was equal to 3 and by Carcione et al (1991), who obtained a minimum value of \(\lambda_0/d \) between 5 and 8. Using equation (5) their results can be predicted and the difference explained by the difference in reflection coefficient and the ratio of \(\tau_2 \) to \(\tau_1 \).

Inspection of equation (5) reveals that the dimensionless function \(\beta \) approaches 0 whenever the reflection coefficient \(r \) becomes close to 1. This implies that \(\lambda_0/d \) approaches

\[
\lambda_0/d = \frac{\pi}{\sqrt{\varepsilon}} \sqrt{\frac{1}{\varepsilon}}.
\]

(7)

The limit given by equation (7) corresponds to \(\lambda_0/d \approx 13 \) for \(\varepsilon = 0.01 \).

I have derived an analytical expression for the ratio of the dominant wavelength to the layer spacing for a periodically layered medium. The analysis of this expression leads to the following conclusions:

1. The minimum ratio of wavelength to layer spacing \(\lambda_0/d \) required to approximate wave propagation in a periodic layered medium with wave propagation in a corresponding anisotropic homogeneous medium depends on the reflection coefficient \(r \) and the ratio of travel times \(\tau_2/\tau_1 \) through each of the two layers. The approximate relation between \(\lambda_0/d \), \(r \) and \(\tau_2/\tau_1 \) is given by equation (5). This is verified by comparison with laboratory measurements and numerical simulations.

2. The minimum value of \(\lambda_0/d \) increases with increasing reflection coefficient and reaches maximum value for large reflection coefficients at approximately 13. Although a lower limit for the minimum value of \(\lambda_0/d \) has not been found, values as low as 3 has been demonstrated to exist for media with small reflection coefficients.

Acknowledgements

This work was completed while the author was visiting Osservatorio Geofisico Sperimentale in Trieste, Italy. I am grateful for the hospitality and support given by Jose Carcione and Geza Seriani.

References

Marion, D., Mukerji, T., and Mavko, G., 1994, Scale effects on velocity dispersion: From ray to effective medium theories in stratified media: Geophysics, 59, 1613-1619.
Validity of long-wave approximation

Fig. 1: $R = \lambda_0/d$ as a function of the relative velocity error $\epsilon = (C_0 - C)/C_0$ for the model defined in table 1 using equation (5) (thick line). The thin line shows ϵ computed by using the exact phase velocity given by equation (1).

Fig. 2: Numerical simulation of the periodic layered medium defined in table 1 (thin line) and numerical simulation of a corresponding homogeneous medium (solid line). The dominating wavelength of the source pulse corresponds to $\lambda_0/d = 11.0$.

Fig. 3: Semblance as a function of $R = \lambda_0/d$ for the model defined in table 1.

Fig. 4: $R = \lambda_0/d$ as a function of volume fraction of steel at a relative velocity difference of $\epsilon = (C_0 - C)/C_0 = 0.01$ for the model defined in table 1 using equation (5) (thick line). The thin line is computed using the exact phase velocity given by equation (1).