Motivation	Objective	Introduction	Equations	Results	Final Remarks	References
0	O	0000	O	00	00	

Laboratory Measurements of Seismic Attenuation

Stian Rørheim¹ and Serhii Lozoyvi¹

¹PhD Candidate at the Department of Geoscience and Petroleum Norwegian University of Science and Technology (NTNU) Supervised by Rune M. Holt and Andreas Bauer

April 23, 2018

Motivation	Objective	Introduction	Equations	Results	Final Remarks	References
0	0	0000	0	00	00	
			Outline.			
			Outline			

Motivation

Objective

Introduction

Literature Different Setups

Equations

Results

Plexiglas Aluminium

Final Remarks

Comments Current Status and Future

・ロト ・個ト ・ヨト ・ヨト

Laboratory measurements of seismic attenuation on fluid-saturated rocks are important because many amplitude and frequency attributes are used to infer information about the subsurface from seismic data sets. For example, these measurements are used as reference values to check the validity of FWI models.

・ロト ・四ト ・ヨト ・ヨト

- Szewczyk et al. (2016) and Lozovyi et al. (2018) demonstrated the ability of the low-frequency apparatus at SINTEF to measure the dynamic elastic constants (i.e. Young's modulus and Poisson's ratio) at seismic frequencies.
- However, thus far, we have been unable to perform reliable attenuation measurements (i.e. $1/Q_E$) on rock samples at these frequencies.
- That being said, we have obtained attenuation measurements on standard test materials (e.g. aluminium, plexiglas, and PEEK) that are comparable to that of others.

Motivation O	Objective O	Introduction ●○○○	Equations O	Results 00	Final Remarks	References
			Literature			

Table 1: Comparison of forced-deformation setups based on longitudinal, torsional, and volumetric mode. Partly based on Subramaniyan et al. (2014).

Mode	Author(s)	Sample material	Force generator	Force sensor	Displacement sensor	Frequency [Hz]	Strain amplitude [V]	Parameter(s)
Longitudinal	Batzle et al. (2006)	Various	Shaker	Aluminium STD	Strain gauge	5-2500	10^7	$E, 1/Q_E, \nu$
	Borgomano et al. (2017)	Limestone	PZT actuator	Aluminium STD	Strain gauge	0.01-10	$\sim 10^{-6}$	$E, 1/Q_E, \nu$
	Bruckshaw et al. (1961)	Various	Coils	-		40-120	-	$E, \Delta W/W$
	Lienert et al. (1990)	Berea	Shaker	PZT transducer	Capactative probe	0.1-100	10-7	$E, 1/Q_E$
	Huang et al. (2015)	Various	PZT actuator	Aluminium STD	Strain gauge	2-800	10-7-10-6	Ε, ν, Α, θ
	Madonna et al. (2013)	Berea	PZT actuator	Aluminium STD	LVTDs	0.01-100	10-6	$E, 1/Q_E$
	Mikhaltsevitch et al. (2014)	Sandstone	PZT actuator	Aluminium STD	Strain gauge	0.1-400	$10^{-8} - 10^{-6}$	$E, 1/Q_E, \nu$
	Paffenholz et al. (1989)	Various	PZC transducer	PZT transducer	Inductive transducer	0.003-300	$10^{-8} - 5 \cdot 10^{-6}$	$E, 1/Q_E$
	Spencer (1981)	Various	Shaker	PZT transducer	Capacitive transducer	4-400	10-6	$E, 1/Q_E$
	Szewczyk et al. (2016)	Shales	PZT actuator	PZT transducer	Strain gauge	1-155	$> 10^{-6}$	Ε, ν
	Tisato et al. (2012)	Berea	Motor	Load cell	Strain gauge cantilever	0.1-100	10^{-6}	$E, 1/Q_E$
	Usher (1962)	Various	Vibrators	-	Optical	2-40	10^6-10^5	$E, \Delta W/W$
Torsional	Behura et al. (2007)	Carbonate	Spindle	-	Transducer	0.01-80	$6 \cdot 10^{-7} - 8 \cdot 10^{-5}$	G, 1/Q _S
	Paffenholz et al. (1989)	Various	PZC transducer	Aluminium STD	Inductive transducer	0.003-100	$2 \cdot 10^{-7} - 10^{-5}$	$G, 1/Q_S$
Volumetric	Pimienta et al. (2015)	Sandstone	Confining pump	Pressure sensor	Strain gauge	0.005-0.5	$5 \cdot 10^{-7} - 10^{-5}$	K, $1/Q_K$

Figure 1: Four different forced-deformation setups in which the force generators, force sensors and samples are highlighted. Partly based on Subramaniyan et al. (2014).

6/17

æ

Motivation	Objective	Introduction	Equations	Results	Final Remarks	References
0	0	0000	0	00	00	

Foil Gauges vs. Semiconductors

(a) Aluminium.

(b) PEEK.

Figure 2: Foil gauges (squares) and semiconductors (circles) are put to the test in terms of stability in the absence (open) and in the presence (filled) of a confining fluid.

Motivation	Objective	Introduction	Equations	Results	Final Remarks	References
0	0	0000	0	00	00	

Foil Gauges vs. Semiconductors

Figure 3: Repeatability of foil gauges (squares) and semiconductors (circles) as a function of two tests performed under identical conditions.

Since aluminium is non-dispersive, its strain is in phase with the applied force, and the attenuation $(1/Q_E)$ may be obtained from the phase shift $(\Delta \theta)$ between the stress and the strain response via

$$\frac{1}{Q_E} = tan(\Delta\theta) = tan(\theta_{std} - \theta_{sam}), \tag{1}$$

whereas the Young's modulus is defined as

$$=rac{\sigma}{\epsilon},$$

which leaves the Poisson's ratio

$$\nu = \frac{\epsilon_{rad}}{\epsilon_{ax}}.$$

Ε

(2)

Figure 4: Our experiments (circles) compared to data digitized from various sources (squares) in the absence of a confining fluid.

æ

イロト イボト イヨト イヨト

Motivation O	Objective O	Introduction 0000	Equations O	Results ○●	Final Remarks	References
			Aluminium			

Figure 5: Our experiments (circles) compared to data digitized from various sources (squares) in the absence of a confining fluid.

2

イロト イヨト イヨト イヨト

- Truth be told, our measurements appears to be more reliable for softer materials, as the data is more scattered for harder materials.
 - In the words of Spencer (1981): "errors in the Young's modulus are generally larger for stiff materials like aluminum, low-porosity carbonates or igneous rocks than for rocks with lower moduli."
 - Rocks exhibit moduli in the region of plexiglas, and it is therefore better to compare it with this material.
- New aluminium standards that has been designed to protect the semiconductors from any fluid interactions are to be tested.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

Motivation	Objective	Introduction	Equations	Results	Final Remarks	References
0	0	0000	0	00	0	

Current Status and Future

- We are currently investigating the temperature dependence of elastic properties of shales at seismic frequencies.
- Bauer et al. (2013) enclosed reasons to believe that the temperature dependence of acoustic velocities is frequency dependent:
 - seismic dispersion is an evident feature in shales, and it is likely that the dispersion is temperature dependent;
 - and the static rock stiffness of shales has been found to be more or less temperature independent while the dynamic stiffness decrease with temperature.

(日)

Motivation	Objective	Introduction	Equations	Results	Final Remarks	References
0	0	0000	0	00	00	

References I

- Batzle, M.L., D.-H. Han, and R. Hofmann (2006). "Fluid mobility and frequency-dependent seismic velocity Direct measurements". In: *GEOPHYSICS* 71.1, N1–N9. DOI: 10.1190/1.2159053.
- Bauer, A., R. M. Holt, A. Bakk, E. Fjær, and J. F. Stenebråten (2013). "Temperature dependence of ultrasonic velocities in shales". In: 47th US Rock Mechanics / Geomechanics Symposium 2013. American Rock Mechanics Association (ARMA).

- Behura, J., M. L. Batzle, R. Hofmann, and J. Dorgan (2007). "Heavy oils: Their shear story". In: *GEOPHYSICS* 72.5, E175–E183. DOI: 10.1190/1.2756600.
- Borgomano, J. V. M., L. Pimienta, J. Fortin, and Y. Guéguen (2017). "Dispersion and attenuation measurements of the elastic moduli of a dual-porosity limestone". In: *Journal of Geophysical Research: Solid Earth* 122.4. 2016JB013816, pp. 2690–2711. ISSN: 2169-9356. DOI: 10.1002/2016JB-013816.
- Bruckshaw, J. M. and P. C. Mahanta (1961). "THE VARIATION OF THE ELASTIC CONSTANTS OF ROCKS WITH FREQUENCY*". In: *Geophysical Prospecting* 9, pp. 65–76. ISSN: 1365-2478. DOI: 10.1111/j.1365-2478.1961.tb01690.x.
- Huang, Q., D.-H. Han, and H. Li (2015). "Laboratory measurement of dispersion and attenuation in the seismic frequency". In: SEG Technical Program Expanded Abstracts 2015, pp. 3090–3094. DOI: 10.1190/segam2015-5909141.1.

Motivation O	Objective O	Introduction 0000	Equations O	Results 00	Final Remarks 00	References
		F	References I	I.		
	Lienert, B. R. and M extensional modu DOI: 10.1029/GL	l. H. Manghnani (19 lus, E". In: <i>Geophy</i> : 017i006p00677.	90). "The relation sical Research Lett	ship between Q _E ers 17.6, pp. 677	¹ and dispersion in -680. ISSN: 1944-8007.	
	Madonna, C. and N. measure low-frequ pp. 302–314. ISSN	Tisato (2013). "A r uency attenuation in 1: 1365-2478. DOI: 10	new Seismic Wave extensional mode" 0.1111/1365-2478	Attenuation Mod . In: <i>Geophysics</i> 3.12015.	dule to experimentally al Prospecting 61.2,	
	Mikhaltsevitch, V., M anelastic propertie 62.6, pp. 1266–12	I. Lebedev, and B. Ges of sandstone floor277. ISSN: 1365-2478	Gurevich (2014). " led with supercritic . DOI: 10.1111/13	Measurements of cal CO2". In: <i>Ge</i> 65–2478.12181.	the elastic and eophysical Prospecting	
	Paffenholz, J. and H frequency and str. <i>Research: Solid E</i>	. <mark>Burkhardt (1989)</mark> . ain range on partiall <i>arth</i> 94.B7, pp. 9493	"Absorption and n y saturated sedime 3–9507. ISSN: 2156	nodulus measure ntary rocks". In -2202. DOI: 10.1	ments in the seismic : <i>Journal of Geophysical</i> 029/JB094iB07 _P 09493.	
	Pimienta, L., J. Fort sandstones". In:	in, and Y. Guéguen GEOPHYSICS 80.2,	(2015). "Bulk moc pp. D111-D127. 1	lulus dispersion a	nd attenuation in 02014-0335.1.	
	Spencer, J. W. (198: and modulus disp pp. 1803–1812. IS	1). "Stress relaxation ersion". In: <i>Journal</i> SSN: 2156-2202. DOI:	of Geophysical Re 10.1029/JB0861E	es in fluid-satura <i>search: Solid Ear</i> 303p01803.	ted rocks: Attenuation <i>th</i> 86.B3,	

Motivation O	Objective O	Introduction 0000	Equations O	Results 00	Final Remarks 00	References
		F	References I	П		
	Subramaniyan, S., B laboratory appara <i>Prospecting</i> 62.6,	. Quintal, N. Tisato, tuses to measure sei pp. 1211–1223. ISS	, E. H. Saenger, a smic attenuation i N: 1365-2478. DOI	nd C. Madonna (2 n reservoir rocks" : 10.1111/1365-:	2014). "An overview of . In: <i>Geophysical</i> 2478.12171.	1
	Szewczyk, D., A.K.M measurement of s <i>Prospecting</i> 64.4,	1. Bauer, and R.M. eismic dispersion un pp. 789–798. DOI: :	Holt (2016). "A no der deviatoric stre 10.1111/1365–247	ew laboratory app ss conditions". In 78.12425.	paratus for the n: Geophysical	
	Tisato, N. and C. M rocks: Measureme pp. 44–53. ISSN: (adonna (2012). "Attents and description 0926-9851. DOI: htt	enuation at low se of a new apparatu ps://doi.org/10	eismic frequencies s". In: <i>Journal of</i> .1016/j.jappged	in partially saturated f Applied Geophysics 86 0.2012.07.008.	5,
	Usher, M. J. (1962). <i>Geophysical Pros</i> 10.1111/j.1365-	"ELASTIC BEHAV pecting 10.2, pp. 119 2478.1962.tb02003	IOUR OF ROCKS 9–127. ISSN: 1365- 2.x.	AT LOW FREQU 2478. DOI:	JENCIES". In:	

<□ > < @ > < \ = > < \ = > \ = の Q (~ 16/17)

Acknowledgement

