Ocean Ambient Noise for Seabed Characterization

Hefeng Dong

Department of Electronic Systems/Acoustics

Norwegian University of Science and Technology

ROSE meeting 23-26 April 2018 NTNU

Outline

- Introduction
- Inversion methods
- Ocean ambient noise
- Geoacoustic inversion
- Summary

Shear-wave velocity

- Directly related to shear modulus, a critical parameter for offshore geotechnical engineering
- Direct indicator for geohazard
- Provide constraint for migrations for reservoir characterization and production monitoring
- Provide constrain for seismic inversion
- Contribute to propagation loss for sonar performance especially in shallow water
- Related to interface wave dispersion.

Interface waves

- Rayleigh/Love wave at air/solid interface
- Scholte wave at fluid/solid interface
- Stoneley wave at solid/solid interface
- Cylindrical propagation along the interface
- Exponential decaying away from the interface
- Elliptical particle motion
- Dispersive for layered media
- Lower frequency components travelling faster

Hodograph of the particle motion

4

Inversion methods

- Linearized inversion
 - Singular value decomposition
- Nonlinear inversion
 - Optimization

ASSA (adaptive simplex simulated annealing)

DE (differential evolution)

GA (genetic algorithms)

Bayesian approach

Bayes' Theorem

Let: m be model parameterization d be observed data

$$P(\mathbf{m} | \mathbf{d}) = \frac{P(\mathbf{m})P(\mathbf{d} | \mathbf{m})}{P(\mathbf{d})}$$

Bayes' Theorem

Let: m be model parameterization

d be observed data

The likelihood: $P(\mathbf{d}|\mathbf{m}) = L(\mathbf{m}) \propto \exp(-E(\mathbf{m}))$

PPD:
$$P(\mathbf{m}|\mathbf{d}) = \frac{\exp(-\phi(\mathbf{m}))}{\int \exp(-\phi(\mathbf{m}'))d\mathbf{m}'}$$

Model parameterization

Bayesian information criterion (BIC)

- Minimizing the BIC trades off fitting the data against over-parameterizing the model
- Providing the simplest parameterization consistent with the data resolution

Passive acoustics

- One man's noise is another man's signal
- Treating noise as the signal
- Extracting coherent information from noise
 - Senor-sensor correlation
 - Beamforming (beam-beam) correlation
- Using correlation from noise for inversion

Ocean ambient noise

- Ambient noise from both land and ocean has been used to infer the earth or ocean bottom structure.
- Applications for seismic exploration and earthquakes have used days or years of ambient noise records.
- In this study 2.3 hours of noise records are analysed.
- Green's functions by cross-correlation of the noise records between all receiver pairs are retrieved.
- Interface wave dispersion curves are extracted from the Green's functions by time-frequency analysis.
- Shear-wave velocity profile in the sea bottom is estimated
 by inverting the dispersion curves of the interface waves.

Ocean ambient noise recording

- OBC sensor : 4 components (Ax, Ay, Az, P)
- OBC orientation : EW
- Sensor spacing : 50 m
- Cable length : Two 5-km/196 sensors
- Recording time : 2.38 hours
- Sampling interval : 2 ms
- Water depth : 300-350 m

Multi-component noise data

Data processing

- Low-pass filtering (0.68-6 Hz)
- One-bit normalization
- Segmentation (4.5s each segment)
- Cross-correlation and stacking
- Gathers (30 Green's functions each gather)

Green functions - pressure

Green functions - Inline

$\pi - p$ transform

Linearly invertible transforms between $(t, x) \leftrightarrow (\tau, p)$

$$t = \tau + px$$

$$\begin{cases} u(x,t) = \int_{-\infty}^{\infty} \frac{N(k,\omega)}{D(k,\omega)} e^{i(kx-\omega t)} dk d\omega \\ U(p,\tau) = \int_{-\infty}^{\infty} u(x,\tau+px) dx = \int_{-\infty}^{\infty} \frac{N(\omega p,\omega)}{D(\omega p,\omega)} e^{-i\omega \tau} d\omega \\ U(p,\omega) = \frac{N(\omega p,\omega)}{D(\omega p,\omega)} \end{cases}$$

Phase-velocity dispersion

17

Model selection $BIC = 2E(\hat{\mathbf{m}}) + M \log_e N$

It is assumed that the seabed consists of homogeneous horizontal layers.

Estimated S-wave velocity profile

www.ntnu.no

Marginal probability profile

www.ntnu.no

Phase-velocity dispersion curves

Scholte- and Love-wave predicted from the 8-layer model.

Summary

- Bayesian approach used to estimate Vs(z) by inverting interface-wave dispersion curves extracted from ocean ambient noise.
- Higher-order modes provide greater near-surface resolution, small overall uncertainties.
- The study shows that it is possible to estimate geoacoustic parameters from short noise records in marine environment.
- This approach provides an alternate means to estimate seismic velocity that is valuable in offshore geotechnical engineering and reservoir monitoring.

Acknowledgement

The author would like to acknowledge Statoil ASA for the permission to publish the data.

www.ntnu.no

24

www.ntnu.no

1D marginal probability distribution

26

1D marginal probability distribution

27