Hardware 0 Results 000000000000 Conclusions 0 Acknowledgments o

3D elastic seismic modeling using CUDA unified memory and gaming GPUs

Tore S. Bergslid¹, Børge Arntsen¹ and Espen Birger Raknes^{2,3}

1: NTNU, Department of Geoscience and Petroleum 2: Aker BP 3: NTNU, Department of Electronic Systems

E-mail: tore.bergslid@ntnu.no

Trondheim April 24th 2018

NTNU – Trondheim Norwegian University of Science and Technology

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments			
00	000000	0	00000000000	0	0			
			0.11					
Outline								
			0 00000000					

Theory

Hardware

Results

Conclusions

 $\ Acknowledgments$

• Efficient and accurate modeling of seismic data is very important for the oil and gas industry today.

- Efficient and accurate modeling of seismic data is very important for the oil and gas industry today.
- FD, FEM, SEM, etc.

Introduction $O \bullet$	Theory	Hardware	Results	Conclusions	Acknowledgments
	000000	0	00000000000	O	0
		Intro	duction		

• Graphics processing units can accelerate seismic modeling.

Introduction $\circ \bullet$	Theory	Hardware	Results	Conclusions	Acknowledgments
	000000	0	00000000000	o	0
		Intro	duction		

- Graphics processing units can accelerate seismic modeling.
- CUDA? OpenCL?

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments				
00	000000	0	00000000000	0	0				
		т	1						
Introduction									

- Graphics processing units can accelerate seismic modeling.
- CUDA? OpenCL?
- Venstad, out-of-core.

• The elastic wave equation can be written as:

$$\rho \ddot{u}_i - \partial_j c_{ijkl} \partial_l u_k = f_i, \tag{1a}$$
$$c_{ijkl} \partial_l u_k n_j = T_i. \tag{1b}$$

• The elastic wave equation can be written as:

$$\rho \ddot{u}_i - \partial_j c_{ijkl} \partial_l u_k = f_i, \tag{1a}$$
$$c_{ijkl} \partial_l u_k n_j = T_i. \tag{1b}$$

• Solved by the FD method, velocity-stress scheme, with non-splitting CFS PML ABC.

- CUDA Unified Memory
- Pascal architecture

Theory

000000

Hardware

Results 0000000000000 Conclusions 0 Acknowledgments o

Theory

000000

Iardware

Results 00000000000000 Conclusions 0 Acknowledgments o

Theory

000000

Iardware

Results 00000000000000 Conclusions 0 Acknowledgments o

Theory

000000

ırdware

Results 000000000000 Conclusions 0 Acknowledgments o

Hardware

Results 00000000000 Conclusions o Acknowledgments o

Hardware

- "Maur" ("Ant")
- 21 nodes
- 2 \times Intel Xeon E5-2660 10-core CPUs
- 2 × Nvidia GTX Titan X GPU
- 128 GB RAM

Photo: NTNU HPC

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	•0000000000	O	0
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	•0000000000	O	o
		Mod	eling results		

 $\overline{}$

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	•0000000000	o	o
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	•0000000000	O	0
		Modelin	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•000000000	o	o
		Modelir	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•0000000000	O	o
		Mod	oling regults		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgmen
00	000000	0	•000000000	o	o
		Modelir	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgme
00	000000	o	•0000000000	o	0
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgmen
00	000000	0	•0000000000	o	O
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgmen
00	000000	o	•0000000000	o	O
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•0000000000	O	O
		Mod	oling regults		

Introduction	Theory	Hardware	$\substack{\text{Results}\\ \bullet 00000000000000000000000000000000000$	Conclusions	Acknowledgmer
00	000000	0		o	0
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•0000000000	O	O
		Mod	oling regults		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgmen
00	000000	0	•0000000000	O	0
		Mod	oling regults		

Modeling results

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	o	•0000000000	o	o
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgmen
00	000000	0	•000000000	o	0
		Modelir	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgn
00	000000	0	•0000000000	o	o
			1.11		

Introduction	Theory	Hardware	Results	Conclusions
00	000000	0	•0000000000	o

Modeling results

Acknowledgments o

Introduction	Theory	Hardware	Results	Conclusions
00	000000	0	•0000000000	0

Modeling results

Acknowledgments

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	•0000000000	O	0
		Mod	eling results		

 $\overline{}$

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•0000000000	O	o
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	•0000000000	O	0
		Modelin	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•000000000	o	o
		Modelir	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•000000000	o	o
		Modelir	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	o	•0000000000	o	o
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgmen		
00	000000	0	•00000000000	O	o		
Modeling regults							

Modeling results

Introduction	Theory	Hardware	$\substack{\text{Results}\\ \bullet 00000000000000000000000000000000000$	Conclusions	Acknowledgments
00	000000	0		o	o
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	•0000000000	o	0
		Mod	eling results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment		
00	000000	o	•0000000000	o	o		
Modeling results							

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•000000000	o	0
		Modelir	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgment
00	000000	0	•0000000000	o	o
		Modelir	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
oo	000000	0	0000000000	o	o
		Modeli	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
oo	000000	0	0000000000	O	o
		Modeli	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	0000000000	O	0
		Modelii	ng results		

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	0000000000	O	0
		Modelii	ng results		

Introduction	
00	

I

Results 00000000000000

Conclusions 0 Acknowledgments o

Modeling results

Introduction	
00	

E

Hardware o $\substack{\text{Results}\\000\bullet0000000}$

Conclusions 0 Acknowledgments o

Modeling results

H

ware

 $\substack{\text{Results}\\0000\bullet0000000}$

Conclusions 0 Acknowledgments o

Hardware	Physics	Model size	Runtime
CPU	Acoustic	627x317x411	$157 \ 200 \ s^1$
CPU	Elastic	627 x 317 x 411	$519 600 { m s}^1$
CPU	Visco-elastic	627 x 317 x 411	$2 \ 098 \ 800 \ { m s}^1$

H

Results 00000000000

Conclusions 0 Acknowledgments o

Hardware	Physics	Model size	Runtime
CPU	Acoustic	627x317x411	$157 \ 200 \ s^1$
CPU	Elastic	627 x 317 x 411	$519 600 { m s}^1$
CPU	Visco-elastic	627 x 317 x 411	$2 \ 098 \ 800 \ { m s}^1$
GPU	Elastic	627x317x411	$5~676~{ m s}$
GPU	Visco-elastic	627 x 317 x 411	$99~556~{\rm s}$

H

R

Results 00000000000

Conclusions 0 Acknowledgments 0

Hardware	Physics	Model size	Runtime
CPU	Acoustic	627x317x411	$157 \ 200 \ s^1$
CPU	Elastic	627 x 317 x 411	$519 600 { m s}^1$
CPU	Visco-elastic	627 x 317 x 411	$2 \ 098 \ 800 \ s^1$
GPU	Elastic	627x317x411	$5~676~{ m s}$
GPU	Visco-elastic	627 x 317 x 411	$99556{\rm s}$
GPU	Elastic	450x450x450	$6 \ 348 \ \mathrm{s^1}$

H

Results 00000000000

Conclusions 0 Acknowledgments o

Hardware	Physics	Model size	Runtime
CPU	Acoustic	627 x 317 x 411	$157 \ 200 \ { m s}^1$
CPU	Elastic	627 x 317 x 411	$519 600 { m s}^1$
CPU	Visco-elastic	627 x 317 x 411	$2 \ 098 \ 800 \ {\rm s}^1$
GPU	Elastic	627x317x411	$5~676~{ m s}$
GPU	Visco-elastic	627 x 317 x 411	$99~556~{\rm s}$
GPU	Elastic	450 x 450 x 450	$6 \ 348 \ \mathrm{s}^1$
GPU	Elastic	460 x 460 x 460	$7~128~{ m s}^1$

H

Results 00000000000

Conclusio O Acknowledgments o

Hardware	Physics	Model size	Runtime
CPU	Acoustic	627 x 317 x 411	$157 \ 200 \ { m s}^1$
CPU	Elastic	627 x 317 x 411	$519 600 { m s}^1$
CPU	Visco-elastic	627 x 317 x 411	$2 \ 098 \ 800 \ s^1$
GPU	Elastic	627x317x411	$5~676~{ m s}$
GPU	Visco-elastic	627 x 317 x 411	$99556{\rm s}$
GPU	Elastic	450 x 450 x 450	$6 \ 348 \ \mathrm{s}^1$
GPU	Elastic	460x460x460	$7~128~{ m s}^1$
GPU	Elastic	470x470x470	$43 \ 320 \ s^1$

H

 $\begin{array}{c} \text{Results} \\ \text{0000} \bullet \text{0000000} \end{array}$

Conclusio o Acknowledgments o

Hardware	Physics	Model size	Runtime
CPU	Acoustic	627 x 317 x 411	$157 \ 200 \ s^1$
CPU	Elastic	627 x 317 x 411	$519 600 { m s}^1$
CPU	Visco-elastic	627 x 317 x 411	$2 \ 098 \ 800 \ { m s}^1$
GPU	Elastic	627x317x411	$5~676~{ m s}$
GPU	Visco-elastic	627 x 317 x 411	$99~556~{\rm s}$
GPU	Elastic	450 x 450 x 450	$6 \ 348 \ \mathrm{s}^1$
GPU	Elastic	460 x 460 x 460	$7~128~{ m s}^1$
GPU	Elastic	470x470x470	$43 \ 320 \ { m s}^1$
GPU	Elastic	480x480x480	$47 \ 640 \ s^1$

H

ardware

Results 00000000000

Conclusions o Acknowledgments o

Introduction	
00	

rdware

Results 0000000000000

Conclusions 0 Acknowledgments 0

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	00000000000	0	0

FWI model

- Synthetic model representative of the Gullfaks field
- 10 km long, 3 km deep
- 2001×600 grid points
- Total of 101 shots and 2001 receivers
- 3.3 second recording, 5500 time steps
- Source: 15 Hz Ricker wavelet bandpass filtered to 0-7 Hz, 0-10 Hz, and unfiltered.
- Receivers: Pressure
- $\sim 50~{\rm GB}$ RAM per source

Introduction	Theory	Hardware	Results	Conclusions	Acknowledgments
00	000000	0	0000000000	0	0

FWI runtimes

- Achieved approximately 100 times speedup of single source 3D elastic FD modeling.
- Achieved approximately 12 times speedup of FWI.

- Achieved approximately 100 times speedup of single source 3D elastic FD modeling.
- Achieved approximately 12 times speedup of FWI.
- Writing fast GPU code is relatively easy.

Acknowledgments

We thank the ROSE consortium and their sponsors for support. The authors would like to thank NTNU and Aker BP ASA for making the code available through the Codeshare project.