

Estimating S-wave velocities and changes from tube waves

Daniel Wehner

Filipe Borges, Izzie Y. Liu, Martin Landrø

Department of Geoscience and Petroleum, NTNU Trondheim

Tube Wave

- Tube wave history
 - Lamb (1898), Biot (1952), Somers (1953), ...
- Generated at interfaces striking the borehole (Hardage, 1981)
- Usage:
 - identification of fractures (Hornby et al. 1989; Li et al., 1994)
 - permeability of formation when coupled to borehole fluid (White, 1965; Chang et al., 1988; Winkler et al. 1989)
 - estimate S-wave of formation from acoustic logging (Stevens and Day, 1986)
 - often considered as noise in VSP

Is it possible to estimate the Shear Modulus and S-Wave velocity changes in the geological formation by measuring Tube waves?

Advantages

- Fixed source position
 - position and firing time is not required
- Only hydrophones are required
 - free from mechanical noise (Peng, 1996)
 - low-cost
- Permanently installed system
- Might use passive seismic recordings

Problems

- Precise estimation of tube wave velocity
- Tube wave depends on several borehole parameter (casing, logging tool, borehole fluid)

Theory

Important parameter for Tube wave vs. Shear Modulus of formation

Theory

(1) Only logging tool:

(Marzetta and Schoenberg, 1985)

(2) Only casing:

(Marzetta and Schoenberg, 1985, Norris 1990)

(3) Logging tool and casing:

(Norris, 1990)

$$v_{t1} = \left\{ \rho_f \left[\frac{1}{K_f} + \frac{1}{1 - \eta} \left(\frac{1}{\mu_s} + \frac{\eta}{\mu_t} \right) \right] \right\}^{-\frac{1}{2}}$$

$$v_{t2} = \left\{ \rho_f \left[\frac{1}{K_f} + \frac{1}{N} \right] \right\}^{-\frac{1}{2}}$$

$$\nu_{t3} = \left\{ \rho_f \left[\frac{1}{K_f} + \frac{\eta}{(1-\eta)\mu_t} + \frac{1}{(1-\eta)N} \right] \right\}^{-\frac{1}{2}}$$

$$N = \frac{2(1 - \nu_c)\mu_s + (\mu_c - \mu_s)(1 - a^2)(1 - \beta\nu_c^2)}{2(1 - \nu_c) - \left(1 - \frac{\mu_s}{\mu_c}\right)(1 - 2\nu_c + \beta\nu_c^2)(1 - a^2)}$$

Theory

(1) Only logging tool:

(3) Logging tool and casing:

Sensitivity to different parameter

Borehole diameter

Casing thickness

····· reference

Experiments

Experiments

Workhall

Wells

Source

Experiments

Receiver: 24 channel hydrophone array

- spacing: 1 m
- frequency range1 Hz 10000 Hz

Tests:

- Well 1: September 17, October 17 and March 18
- Well 2: October 17

Well 1:

- diameter: 15 cm
- casing thickness: 4 mm

Well 2:

- diameter: 30 cm
- casing thickness: 5 mm

Results

Active recordings and noise

Passive recordings

٠

14

Tube Wave Velocity

Least-squares line fit to estimate velocity

- between 50-450 Hz
- dispersion effect: velocity decrease < 0.02 % between 0-1000 Hz

Tube Wave Velocity

Estimated Formation Properties

Smaller estimated range in well 2

- higher accuracy of tube wave velocity
- different borehole geometry

Field example

Field example: CO₂ injection

Changes due to CO₂ injection

Precipitation of salt

(Lab examples: Vanorio et al., 2011; Grude et al. 2014)

- sandstone, initial porosity Φ = 0.3
- salinity: 50000 ppm

Pore pressure P_p increase

(Field examples: Duffaut and Landrø, 2007; Grude et al. 2014)

- inital $P_p = 7.5$ MPa (ca. 750 m depth)
- Hertz-Mindlin model

Field example: CO₂ injection

- inital $P_p = 7.5$ MPa (ca. 750 m depth)
- decrease of 2.5 MPa due to injection

Conclusion/Discussion

WAVE S NTNU

- Absolute estimation of shear modulus/S-wave is diffucult
 - additional measurements required
- Monitoring could be feasible
 - temperature in borefluid should be measured
 - high accuracy of measured tube wave velocity required
- Feasiblity depends on geological setting and borehole set-up
 - borehole should have: thin casing, large diameter, small casing shear modulus
 - geological formation with low initial shear modulus
- Advantages
 - no firing time and source location required (Passive Seismics?)
 - hydrophones: cheap, permanent monitoring system (Fibre Optics?)
- Disadvantages
 - tube wave depends on several parameter

The WAVES project, funded by the European Union's Horizon 2020 research and innovation programme under the Marie Slodowska-Curie grant agreement.

Norwegian University of Science and Technology Trondheim

References

- Biot, M. A. [1952] Propagation of elastic waves in a cylindrical bore containing a fluid. Journal of Applied Physics, 13, 997-1005.
- Duffaut, K. and Landrø, M. [2007] Vp/Vs ratio versus differential stress and rock consolidation A comparison between rock models and time-lapse AVO data. *Geophysics*, **72** (5), C81-C94.
- Grude, S., Landrø, M. and Dvorkin, J. [2014] Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field. International Journal of Greenhouse Gas Control, **27**, 178-187.
- Lamb, H. [1898] On the velocity of sand in a tube as affected by the elasticity of the wall. *Manchester Memoires*, **42**, 1-16.
- Marzetta, T. L. and Schoenberg, M. [1985] Tube waves in cased boreholes. SEG Technical Program Expanded Abstract, 34-36.
- Norris, A. N. [1990] The speed of a tube wave. *Journal of Acoustical Society of America*, 87, 414-417.
- Peng, C., Lee, J. M. and Toksöz, M. N. [1996] Pressure in a fluid-filled borehole caused by a seismic source in stratified media. *Geophysics*, **61**, 43-55.
- Somers, E. [1953] Propagation of acoustic waves in a liquid-filled cylindrical hole surrounded by an elastic solid. *Journal of Applied Physics*, **24**, 513-521.
- Vanorio, T., Nur, A. and Ebert, Y. [2011]. Rock physics analysis and time-lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks. *Geophysics*, **76** (5), O23-O33.

Appendix

Estimated Formation Properties

"Reference" test site Edberg

Long and Donohue, 2007

 v_s at Edberg site ca. 300 m/s (down to 10 m depth)

Outline

• Theory

- Relation between Tube wave and S-wave in the surrounding formation
- Experiments
 - Set up and parameter
- Results
 - Measured Tube wave
 - Estimation of S-wave in the surrounding formation
- Discussion
 - Sensitivity analysis
 - Theoretical field example
- Conclusion

• longer repeatable signal in deep well

0 -10 shallow well: 10/17 add read of a reading deep well: 10/17 -60 surface: 03/18 -70 20 40 60 80 100 0 **Frequency (Hz)**

Passive recordings

Peaks at
$$f = \frac{1200\frac{m}{s}}{4*30 m} (2m - 1), m = 1,2,3, ...$$

- Shallow well Δf = 20 Hz •
- Deep well Δf = 6 Hz •

Sensitivity to different parameter

WAVES NTNU

Paramter

- Geometry
 - $r_{\min} = 0.035 m$
 - $r_{max} = 0.07 m$
 - $d_{cas} = 0.0038 m$
 - $\implies \eta = r_{min}^2 / r_{max}^2$ $\implies a = (r_{max} d_{cas}) / r_{max}$
- Fluid \rightarrow Water • $\rho_f = 1000 \frac{kg}{m^3}$
 - $K_f = 2.15 * 10^9 Pa$
- Casing \rightarrow Steel
 - $\mu_c = 77 * 10^9 Pa$
 - $v_c = 0.3$
- Logging tool \rightarrow Keflar

• $\mu_t = 2.9 * 10^9 Pa$

Measured and Modelled Data

Model:

Recorded data:

- stacked
- f-k filtered

Fime (s)

32

Tube Wave dependency

- Velocity of the tube wave is influenced by (Galperin, 1985)
 - the borehole casing
 - elastic constants of surrounding formation
 - elastic constants of drilling fluid
 - the logging tool

- Intensity of the tube wave is influenced by (Galperin, 1985)
 - contact between casing and formation, e.g. cementation
 - density of the fluid
 - depth below water level
 - for Geophones: applied force for clamping the tool

- better coupling \rightarrow higher intensity
- lower density \rightarrow lower intensity
- increasing depth ightarrow lower intensity

-

_

higher force \rightarrow lower intensity

Vs change due to loading

• Boussinesq's formula

- $m = 200000 \, kg$
- $A = 100 m^2$
- $g = 10 m/s^2$

Vs change due to loading

<u>In rocks</u>

assuming

$$P_{lit} = \rho_r gz, \quad P_{pore} = \rho_f gz,$$
$$P_{load} = \frac{mg}{A}$$

Force at surface:

- $m = 200000 \, kg$
- $A = 100 m^2$
- $g = 10 m/s^2$

Vs change due to loading

In rocks

• Modified guess of Boussinesq's formula

$$P_{load} = P_{surface} I_2$$
$$I_2 = \frac{1}{\left(1 + \left(\frac{r}{z}\right)^2\right)^{\frac{5}{2}}}$$

Force at surface:

- $m = 200000 \ kg$
- $A = 100 m^2$
- $g = 10 m/s^2$

1. Holding construction of hydrophone array

- holding board: "seals" the well and more energy is kept inside the borehole (test 3)
- holding metal frame: nearly open to the top of the borehole (test 2)

2. Position of water table in well

different interaction of first downgoing tube wave and ghost reflection in shallow and deep well

3. Variation of water table position

Effective pressure change of 0.01 Mpa $\Delta p_e = (\rho_r - \rho_f) * g * \Delta z$ $\Delta z = \text{difference in water table}$

→ max. 0.1 % velocity change (1.2 m/s in v_S) (Hertz-Mindlin)

Effective pressure change of 0.01 Mpa $\Delta p_e = (\rho_r - \rho_f) * g * \Delta z$ $\Delta z = \text{difference in water table}$

different for near surface soils/unconsolidated rocks???

4. Radial position of hydrophone array

not centered

centered

- change of wave form, interference with other waves for different hydrophone positions → impact on velocity estimation in fk-domain
- should not cause a change of the tube wave velocity (Norris, 1990)

- Test 5: not centered
- Test 6,7 : centered

5. Temperature effect

orehole

5. Temperature effect

Dixon, 2007:

 $K_f = 2.29 * 10^9 (1 - 48 * 10^{-6} (T - 53)^2)$

6. Interaction with second well/near field effect

- hydrophones in deep well also show upgoing waves earlier than first bottom reflection
 - is recoridng in deep well inpmacted by shallow well and vice versa?

6. Interaction with second well

Frequencies between 50 – 450 Hz are used

7. Background noise (surface waves)

