

TopSeis – Shooting over the seismic spread ... with examples from the Barents Sea

Rose Seminar, April 2018

TopSeis

15000

Shooting over the seismic spread

Artist's impression August 2016

TopSeis

Geo Caspian

Shooting over the seismic spread

TopSeis full-scale real acquisition August 2017

Drone photo

TopSeis

Geo Coral

Sint land

Full-scale real acquisition August 2017

Jan Erik Lie Chief Geo in Lundin Geo Coral, September 2017

Idin

= TopSeis

Rowing on the Barents Sea Geo Coral, September 2017

What is **TopSeis?**

- Sources on top of the spread ...for zero-offsets and split spread
- Wide towed sources ...to reduce the minimum offset
- Dense spatial sampling
 ...to increase subsurface illumination

Near offset CMP coverage on a field test

The Good Lines and the Not-So-Good lines on Conventional

10

Conventional Inlines – down to 1.5 s

TopSeis Inlines – down to 1.5 s

TopSeis with triple source for denser crossline sampling

Motivation – Better imaging in the Barents Sea

The imaging problems in the Barents Sea

Alta-Gotha water bottom, Multi-Beam sonar

Arch-typical, simplistic geology in the Loppa High area in the Barents Sea

Multiples can be complicated

Model:

One reflector and two diffractors giving 3 primary events

<u>1st order multiple events:</u>

 $3^2 = 9$ multiple events

600

800

1000

Barents Sea; Complex primary and even more complex multiples

Constant Channel Gather, from TopSeis over Alta-Gotha, 2017

Barents Sea; Hard and less hard water bottom

Shot Gathers – Example from 2D test offshore Gabon

Modelling, field tests and full-scale acquisition

2014 - 2015

- Comprehensive modelling program
- Geowave Voyager shooting over the spread of Endeavour
- Geowave Voyager with wide-towed source to assess the wide-tow limits

2016

- 2D line (30 km) of TopSeis vs BroadSeis offshore Gabon
- 3D TopSeis on Frigg-Gamma in the North Sea (15 x 3) km

2017 – Barents Sea

- Full-scale ~2000 km2 over Loppa High
- "Tour" of 2D lines
- 3D on Wisting (24 x 3) km

Preliminary TopSeis data, Barents Sea

TopSeis in the Barents Sea, 2017

TopSeis in the Barents Sea 2017

- Aug-Oct : Loppa High ~1900 km2
- October : field tests, 2D lines
- October : Mini-3D on Wisting

Vintage data, Loppa High

TopSeis preliminary data, Loppa High

TopSeis in Barents Sea

Vintage Inline

TopSeis (fast track) Inline

28

Lundin

TopSeis (fast track)

Inline

Time Slices

Shallow

Deep

Wisting 3D TopSeis test October 2017

South Pole, 14th December 1911 Amundsen, Bjaaland, Hanssen, Hassel, Wisting

Wisting TopSeis: Input

Wisting TopSeis: Direct arrival attenuation

Adaptive subtraction of direct arrival model from notional source data

Wisting TopSeis: After source debubble and zero-phase

33

Wisting TopSeis: After receiver deghosting

Tilted hyperbolic deghosting; developed to respect highly non-linear kinematics at short offsets

Wisting TopSeis: After source deghost

Wisting TopSeis: After demultiple

Demultiple aided through the recording of multiple generator at short offsets

Wisting TopSeis: After imaging

Demultiple aided through the recording of multiple generator at short offsets

TopSeis 2017 vs Vintage 2009 acquisition

TopSeis vs Vintage through Central Well - @@

Wisting 3D TopSeis IL475 – **ZOOM** - @@

40

AVO analysis on Central Well

Shallow AVO with TopSeis; Wisting Inline through central well

43

Shallow AVO with TopSeis; Image gather @ Central Well

Shallow AVO with TopSeis; With reflection angle

45

Shallow AVO with TopSeis; Stack mute

Shallow AVO with TopSeis; Conventional offsets for comparison 47

Shallow AVO with TopSeis; Wisting Inline through central well 48

Shallow AVO with TopSeis; Wisting Inline through central well 49

Inline passing through Central Well, FULL STACK

Xline: 5373 Time (ms): 1057

Inline passing through Central Well, R, * G

51

Inline: 475 Xline: 5330 Time (ms): 866 Color Amp: 77832.6

Xline

Well

Inline passing through Central Well, FULL STACK, ZOOM

52

Inline: 475 Xline: 4194 Time (ms): 681 Color Amp: -281.374

Inline passing through Central Well, Ro * G, ZOOM

53

TopSeis - Conclusions

 Provides unique illumination and fold for improved imaging and reservoir characterization

Complete top-to-bottom solution (when also shooting from the front)
 Has been verified in a comprehensive modelling and field test program
 First commercial survey was done in 2017 in the Barents Sea

Thank you!

The project is a result of close cooperation between Lundin and a cross-disciplinary team of experts from CGG

Acknowledgements

Lundin: Jan Erik Lie, Vidar Danielsen, Per-Eivind Dhelie, Espen Harris Nilsen, Trond Kristensen, Halvor Jahre

AkerBP, Idemitsu, DEA, Petoro: License partners with Lundin in the Barents Sea

CGG Subsurface Imaging:

Erik Hicks, Finn Foldal, Carl-Inge Nilsen, Denis Nasyrov, Peng Zhao, Gordon Poole, James Cooper, Ronan Sablon, Nicolas Salaun, Andrew Wright, Richard Wombell, Cathy Walters, Jean-Louis Rivault, Robert Soubaras, Haishan Zheng, Guillaume Henin, Stephane Pellerin, Madeleine Drubigny, Mathieu Chambefort, Jean-Michel Deprey, James McLeman, Kristoffer Sundøy, Per Inge Flo, Antonio Pica, Sylvain Leroy

CGG MCNV: for Frigg and Wisting acquisitions and showrights

CGG Marine:

Anne Camerer, Claire Grubb, Risto Siliqi, Thomas Elboth, Vincent Peyrin, Kaare Brurok

CGG GeoConsulting: Mathieu Denti, Marianne Gram-Jensen

The crews on the CGG vessels: Oceanic Endeavour, Geowave Voyager, Oceanic Champion, Geo Caspian