Iterative signal decomposition and time-frequency representation using singular spectrum analysis

> Milton J. Porsani, UFBA Bjørn Ursin, NTNU/UFBA Michelângelo G. da Silva, UFBA

> > April, 2018

CONTENTS

1 Introduction

- 2 Singular Spectrum Analysis SSA
- 3 Iterative and recursive signal decomposition via SSA
- 4 Time-frequency representation using AR coefficients
- 5 Numerical Applications
- 6 Conclusions

<日

<</p>

Introduction

- The Singular Spectral Analysis (SSA) method is a particular way to apply the Singular Value Decomposition (SVD) method in a single (or multivariate) time series;
- The SSA method in an iterative and recursive way to estimate individual components of the signal. Applying the short time autoregressive method to obtain a time-frequency representation of the signal;
- For the computing of the instantaneous frequency we provide a new equation which depend on a single autoregressive coefficient;
- The effectiveness of the new approach is demonstrated in a synthetic data example and in the removal of ground-roll noise from land seismic data.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Singular Spectrum Analysis

• Let the vector $\mathbf{d} = [d(0), \dots, d(N)]^T$ represent single-trace data, and, let \mathbf{D} be the Toeplitz matrix with the data shifted by one time sample in each column. τ represents the variable associated with the time shift, $\tau = 0, \dots, M$. The matrix \mathbf{D} has dimensions, $(M + N + 1) \times (M + 1)$, and

$$\mathbf{D}^{T} = \begin{bmatrix} d(0) & \dots & d(N) & \mathbf{O}_{M} \\ & \ddots & \ddots & \ddots \\ \mathbf{O}_{M} & d(0) & \dots & d(N) \end{bmatrix}$$

■ Where O_M represent a triangle of null coefficients. The matrix **D**^T is an extension of the so-called trajectory matrix which is used in SSA.

ヘロン 人間 とくほど 人見とし ほ

• We have $\mathbf{D} = [\mathbf{E}_0 \mathbf{d} \dots \mathbf{E}_M \mathbf{d}] = [\bar{\mathbf{d}}_0 \dots \bar{\mathbf{d}}_M]$, where \mathbf{E}_k is a $(N + M + 1) \times (M + 1)$ shifting matrix:

$$\mathsf{E}_k = egin{bmatrix} \overline{\mathbf{0}}_k \ \mathbf{I}_{N+1} \ \overline{\mathbf{0}}_{M-k} \end{bmatrix} \,,$$

 \mathbf{I}_{N+1} is the identity matrix of order N+1. $\overline{\mathbf{0}}_k$ and $\overline{\mathbf{0}}_{M-k}$ represent matrices with null coefficients and dimensions $k \times (N+1)$ and $(M-k) \times (N+1)$, respectively, such

$$\overline{\mathbf{d}}_k = \mathbf{E}_k \mathbf{d} = \begin{bmatrix} \mathbf{0}_k \\ \mathbf{d} \\ \mathbf{0}_{M-k} \end{bmatrix}$$

 $\mathbf{0}_k$ and $\mathbf{0}_{M-k}$ represent the vectors with k and M-k null coefficients, respectively. The signal can be expressed as $\mathbf{d} = \frac{1}{M+1} \sum_{k=0}^{M} \mathbf{E}_k^T \overline{\mathbf{d}}_k$.

The reduced SVD

The reduced SVD of the matrix D is

$$\mathbf{D} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \sum_{\tau=0}^M \sigma_\tau \mathbf{u}_\tau \mathbf{v}_\tau^T = \sum_{\tau=0}^M \widetilde{\mathbf{D}}_\tau \,,$$

where $\widetilde{\mathbf{D}}_{\tau} = \sigma_{\tau} \mathbf{u}_{\tau} \mathbf{v}_{\tau}^{T}$ represents the eigenimage of index τ of the data matrix \mathbf{D} . Then the eigenvalue decomposition of the data covariance matrix is

$$\mathbf{D}^T \mathbf{D} = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

The eigenvalues are σ_{τ}^2 , and the eigenvectors are \mathbf{v}_{τ} .

A 回 > A 回 > A 回 >

$$\widetilde{\mathbf{d}}_{\tau} = \sigma_{\tau} \sum_{k=0}^{M} v_{\tau}(k) \mathbf{E}_{k}^{T} \mathbf{u}_{\tau} \,.$$

That is, the left singular vector \mathbf{u}_{τ} is cut, shifted and added to the result with a weight $\sigma_{\tau}v_{\tau}(k)$. The previous equation can be expressed by

$$\widetilde{\mathbf{d}}_{\tau} = \sigma_{\tau} \mathbf{V}_{\tau}^T \mathbf{u}_{\tau}$$

where \mathbf{V}_{τ}^{T} is a $(N+1) \times (M+N+1)$ banded Toeplitz matrix.

(**D**) (**A**) (**A**

The banded Toeplitz matrix given by

$$\mathbf{V}_{\tau}^{T} = \begin{bmatrix} v_{\tau}(0) & \dots & v_{\tau}(M) & \mathbf{O}_{N} \\ & \ddots & \ddots & \ddots \\ \mathbf{O}_{N} & & v_{\tau}(0) & \dots & v_{\tau}(M) \end{bmatrix}$$

It may be shown that: $\mathbf{I} = \frac{1}{M+1} \sum_{\tau=0}^{M} (\mathbf{V}_{\tau}^T \mathbf{V}_{\tau})$.

• Where $\mathbf{V}_{\tau}^{T}\mathbf{V}_{\tau}$ is a symmetric Toeplitz matrix of dimension $(N+1) \times (N+1)$, formed by the autocorrelations coefficients, of the eigenvector \mathbf{v}_{τ} . By multiplying \mathbf{I} by \mathbf{d} we obtain:

$$\mathbf{d} = \frac{1}{M+1} \sum_{\tau=0}^{M} (\mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau}) \mathbf{d} = \frac{1}{M+1} \sum_{\tau=0}^{M} \widetilde{\mathbf{d}}_{\tau} \quad \text{where} \quad \widetilde{\mathbf{d}}_{\tau} = \mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau} \, \mathbf{d} \, .$$

The data vector **d** may be decomposed in terms of the eigentraces **d**_τ.
From equation:

$$\widetilde{\mathbf{d}}_{ au} = \mathbf{V}_{ au}^T \mathbf{V}_{ au} \, \mathbf{d}$$

- We see that the output trace of the eigenimage number τ is the convolution of the data vector d with the autocorrelation of the eigenvector v_τ.
- Since the autocorrelation is zero phase, the phase of the output trace is equal to the phase of the data trace.

Iterative and recursive signal decomposition via SSA

- We use the SSA method to iteratively decompose a signal into high and low energy components using a three-loop algorithm.
- In the inner loop we compute a high-energy component of the signal by recursions in the number of rows in the trajectory matrix using only the first right singular vector, corresponding to the component with highest energy.
- The result is subtracted from the input signal in the second loop and the process is repeated. This gives an estimate of the low-energy part of the signal.
- In the outer loop this low-energy signal is subtracted from the input signal and the result is output as one signal component.
- The whole procedure is then repeated with the low-energy component as the new input signal.

< □ > < □ > < □ > < □ > < □ > < □ >

Algorithm to iterative and recursive signal decomposition via SSA

Initial vector

$$\mathbf{d}_1 = \mathbf{d}$$

DO $k = 1, ..., K$ (Components)
 $M = \max\{1, K - k + 1\}$
 $\widehat{\mathbf{d}}_0 = \mathbf{d}_k$
DO $j = 1, ..., J$ (Iterations)
 $\widetilde{\mathbf{d}}_0 = \widehat{\mathbf{d}}_{j-1}$
DO $\tau = 1, ..., M$ (Recursion in order M)
• Form the matrix $\mathbf{D}_{\tau} = [\overline{\mathbf{d}}_0 \dots \overline{\mathbf{d}}_{\tau}]$ from $\widetilde{\mathbf{d}}_{\tau-1}$
• Compute the first right singular vector \mathbf{v}_0
(of dimension $(\tau + 1) \times 1$)
• Compute the auto-correlation of \mathbf{v}_0 ,
 $\mathbf{r}_{\tau} = (1, r_{\tau}(1), \dots, r_{\tau}(\tau))^T$
• Compute the update $\widetilde{\mathbf{d}}_{\tau} = \mathbf{V}_{\tau}^T \mathbf{V}_{\tau} \widetilde{\mathbf{d}}_{\tau-1}$
(equation (11))
ENDDO
 $\widehat{\mathbf{d}}_j = \widehat{\mathbf{d}}_{j-1} - \widetilde{\mathbf{d}}_M$
ENDDO
Output $\mathbf{x}_k = \mathbf{d}_k - \widehat{\mathbf{d}}_J$
 $\mathbf{d}_{k+1} = \widehat{\mathbf{d}}_J$

э

From each estimated signal component $\boldsymbol{x}(t)$ we form the analytic signal

$$z(t) = x(t) + iy(t) \tag{1}$$

• where y(t) is the Hilbert transform of x(t). For a data window $\{z(t - L\Delta t), \ldots, z(t), \ldots, z(t + L\Delta t)\}$ (Δt is the sample interval) we define the instantaneous auto-correlation,

$$R_t(\tau) = w_t(\tau) \oplus w_t^*(\tau) = A_t(\tau)e^{i\phi_t(\tau)}$$
(2)

where w_t(τ) = {1, c(t), c(t)², ..., c(t)[∞]} is the minimum-phase wavelet corresponding to the inverse of the prediction error operator of order 1, {1, -c(t)}, ⊕ represents correlation and * represents complex conjugate.

The coefficient c(t) may be computed by using the Burg algorithm (Burg, 1975). We remark that |c(t)| < 1. It may be shown that,

$$R_t(\tau) = R_t(0)w_t(\tau), \ \tau \ge 0 \tag{3}$$

where $R_t(0) = 1/(1 - c(t)c^*(t))$. The normalized derivative of eq. (2) gives,

$$\frac{R'_t(\tau)}{R_t(\tau)} = \frac{A'_t(\tau)}{A_t(\tau)} + i\phi'_t(\tau)$$
(4)

where,

$$\phi_t'(0) = \left. \frac{d\phi_t(\tau)}{d\tau} \right|_{\tau=0} = 2\pi f(t) = \left. \frac{1}{R_t(0)} Imag\{R_t'(\tau)\} \right|_{\tau=0}$$
(5)

Similar equation was presented by Zoukaneri and Porsani (2015). Taking into considerations the characteristics of the minimum-phase wavelet, $w_t(\tau)$, and both the anti-symmetries of the derivative operator, and the imaginary part of the auto-correlation function $R_t(\tau)$ one obtains the equation for the instantaneous frequency,

$$f(t) = \frac{1}{\pi \Delta t} Imag\{\sum_{n=1}^{\infty} \frac{(-1)^{n-1} c(t)^n}{n}\}.$$
 (6)

Additionally, it can be shown that equation (6) may be written as,

$$f(t) = \frac{1}{\pi \Delta t} Imag\{log(1+c(t))\} = \frac{1}{\pi \Delta t} arg(1+c(t))$$

$$= \frac{1}{\pi \Delta t} \arctan\{\frac{Imag\{c(t)\}}{1+real\{c(t)\}}\}.$$
(7)

Then a time-frequency representation of the signal component $x_k(t)$ is given by

$$D_k(t,f) = \sqrt{z_k(t)z_k^*(t)} \,\,\delta(f - f_k(t))\,. \tag{8}$$

• The following pseudo-code illustrates the process:

DO $k = 1, \ldots, K$ (Components)

- compute the complex trace $z_k(t) = x_k(t) + iy_k(t)$
- compute the coefficients $c_k(t)$
- compute the instantaneous frequency $f_k(t)$ (eq. (7))
- \bullet obtain the time-frequency representation $D_k(t,f)$ (eq. (8)) ENDDO

Numerical example

▷ Real seismic data:

Illustrates the decomposition of a seismic trace into five eigentraces;

The single-channel SSA method was applied to each trace of the split-spread shot gather to test effect of the recursion and iterations;

 Generate of the average amplitude spectra of the shot gathers obtained after applications of single-channel SSA method.

・ 何 ト ・ ヨ ト ・ ヨ ト

Figure 1: Decomposition of a seismic trace. Signal components 0 to 4, from high energy to low energy corresponding to (a), (b), (c), (d), (e), respectively. The sum of the components in (f) and the original seismic trace in (g).

Figure 2: The result of SSA with M = 11 recursions in matrix dimension and J = 20 iterations in frequency content. The original shot gather in (a), the high-frequency part in (b), and the low-frequency part in (c).

A D N A B N A B N A B N

Figure 3: Average amplitude spectra of the data in Fig. 2a with M = 11 and no recursions (a), with M = 11 recursions in matrix dimension (b), and with M = 11 recursions in matrix dimension and J = 20 iterations in frequency content (c).

э

イロト イポト イヨト イヨト

 \triangleright The synthetic signal we analyze is a sum of five elements:

$$\begin{aligned} s_1(t) &= 0.8\cos(30\pi t) & 0 \ s \le t \le 6 \ s \\ s_2(t) &= 0.6\cos(70\pi t) & 0 \ s \le t \le 6 \ s \\ s_3(t) &= 0.7\cos(130\pi t) + 5\sin(2\pi t) & 4 \ s \le t \le 8 \ s \\ s_4(t) &= \sin\{\frac{8\pi 100^{t/8}}{\log(100)}\} & 6 \ s \le t \le 10 \ s \\ s_5(t) &= 3e^{-1250(t-2)^2}\cos(710(t-2)) & 0 \ s \le t \le 10 \ s \end{aligned}$$

- It is composed of two harmonic components with frequency of 15 and 35 Hz, a frequency-modulated harmonic around 65 Hz, a sliding harmonic from 35 to 158 Hz, and a Morlet wavelet with central frequency of approximated 113 Hz.
- We generate a composite signal and decomposed using the pseudo-code with K=15 components and J=200 iterations.
- We sum the 15 different signal components into four new signal components with their time-frequency representation. The sum of these gives the composite time-frequency representation is shown.

Numerical Applications

Figure 5: Time-frequency representation of the signal components shown in Figure 4. A window length equal to 2L + 1 = 23 data samples was used for computation of the AR coefficients.

NTNU, 2018

Figure 6: Decomposition of the signal (Original) in top of the figure by combining the signal components in common signal groups.

< ⊒ >

Numerical Applications

Figure 7: Time-frequency representation of the signal components shown in Figure 6. A window length equal to 2L + 1 = 23 data samples was used for computation of the AR coefficients.

NTNU, 2018

Figure 8: Composite time-frequency representation of the signal shown in Figure 6.

< A I

Conclusions

- We proposed an iterative and recursive signal decomposition algorithm based on the SSA method. We demonstrated that the output corresponds to filtering the time series with a zero-phase filter, which is the auto-correlation of the first eigenvector of the covariance matrix of the input signal;
- From the analytic signal and AR modeling we derived a new equation to compute the instantaneous frequency which depend on a single AR coefficient. From each individual component a time-frequency representation is obtained and the sum of these gives a time-frequency distribution of the input signal;
- Application to a synthetic data example shows that the method gives good results compared with other published algorithms.

(日)

Acknowledgements

- INCT-GP/CNPq/MCT, ANP, PETROBRAS, FINEP, FAPESB Brazil for financial support;
- Bjorn Ursin has received financial support from Statoil Brazil, from CNPq, Brazil through the project no 400757/2014-1, and from the Norwegian Research Council through the ROSE project.

< /⊒ ► < Ξ ► <

Conclusions

THANK YOU

<ロト < 四ト < 三ト < 三ト