Iterative signal decomposition and time-frequency representation using singular spectrum analysis

Milton J. Porsani, UFBA

Bjørn Ursin, NTNU/UFBA
Michelângelo G. da Silva, UFBA

April, 2018

CONTENTS

1 Introduction

2 Singular Spectrum Analysis - SSA

3 Iterative and recursive signal decomposition via SSA

4 Time-frequency representation using AR coefficients

5 Numerical Applications

6 Conclusions

Introduction

- The Singular Spectral Analysis (SSA) method is a particular way to apply the Singular Value Decomposition (SVD) method in a single (or multivariate) time series;
- The SSA method in an iterative and recursive way to estimate individual components of the signal. Applying the short time autoregressive method to obtain a time-frequency representation of the signal;
- For the computing of the instantaneous frequency we provide a new equation which depend on a single autoregressive coefficient;
- The effectiveness of the new approach is demonstrated in a synthetic data example and in the removal of ground-roll noise from land seismic data.

Singular Spectrum Analysis

- Let the vector $\mathbf{d}=[d(0), \ldots, d(N)]^{T}$ represent single-trace data, and, let \mathbf{D} be the Toeplitz matrix with the data shifted by one time sample in each column. τ represents the variable associated with the time shift, $\tau=0, \ldots, M$. The matrix \mathbf{D} has dimensions, $(M+N+1) \times(M+1)$, and

$$
\mathbf{D}^{T}=\left[\begin{array}{ccccc}
d(0) & \ldots & d(N) & & \mathrm{O}_{M} \\
& \ddots & \ddots & \ddots & \\
\mathrm{O}_{M} & & d(0) & \ldots & d(N)
\end{array}\right]
$$

- Where O_{M} represent a triangle of null coefficients. The matrix \mathbf{D}^{T} is an extension of the so-called trajectory matrix which is used in SSA.

■ We have $\mathbf{D}=\left[\begin{array}{lll}\mathbf{E}_{0} \mathbf{d} & \ldots & \mathbf{E}_{M} \mathbf{d}\end{array}\right]=\left[\begin{array}{lll}\overline{\mathbf{d}}_{0} & \ldots & \overline{\mathbf{d}}_{M}\end{array}\right]$, where \mathbf{E}_{k} is a $(N+M+1) \times(M+1)$ shifting matrix:

$$
\mathbf{E}_{k}=\left[\begin{array}{c}
\overline{\mathbf{0}}_{k} \\
\mathbf{I}_{N+1} \\
\overline{\mathbf{0}}_{M-k}
\end{array}\right]
$$

\mathbf{I}_{N+1} is the identity matrix of order $N+1 . \overline{\mathbf{0}}_{k}$ and $\overline{\mathbf{0}}_{M-k}$ represent matrices with null coefficients and dimensions $k \times(N+1)$ and $(M-k) \times(N+1)$, respectively, such

$$
\overline{\mathbf{d}}_{k}=\mathbf{E}_{k} \mathbf{d}=\left[\begin{array}{c}
\mathbf{0}_{k} \\
\mathbf{d} \\
\mathbf{0}_{M-k}
\end{array}\right]
$$

$\mathbf{0}_{k}$ and $\mathbf{0}_{M-k}$ represent the vectors with k and $M-k$ null coefficients, respectively. The signal can be expressed as $\mathbf{d}=\frac{1}{M+1} \sum_{k=0}^{M} \mathbf{E}_{k}^{T} \overline{\mathbf{d}}_{k}$.

The reduced SVD

- The reduced SVD of the matrix \mathbf{D} is

$$
\mathbf{D}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{\tau=0}^{M} \sigma_{\tau} \mathbf{u}_{\tau} \mathbf{v}_{\tau}^{T}=\sum_{\tau=0}^{M} \widetilde{\mathbf{D}}_{\tau},
$$

where $\widetilde{\mathbf{D}}_{\tau}=\sigma_{\tau} \mathbf{u}_{\tau} \mathbf{v}_{\tau}^{T}$ represents the eigenimage of index τ of the data matrix \mathbf{D}. Then the eigenvalue decomposition of the data covariance matrix is

$$
\mathbf{D}^{T} \mathbf{D}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T} .
$$

The eigenvalues are σ_{τ}^{2}, and the eigenvectors are \mathbf{v}_{τ}.

■ For a given eigenimage, $\widetilde{\mathbf{D}}_{\tau}$, we can apply the matrix \mathbf{E}_{k} and restore a transformed data component

$$
\widetilde{\mathbf{d}}_{\tau}=\sigma_{\tau} \sum_{k=0}^{M} v_{\tau}(k) \mathbf{E}_{k}^{T} \mathbf{u}_{\tau}
$$

That is, the left singular vector \mathbf{u}_{τ} is cut, shifted and added to the result with a weight $\sigma_{\tau} v_{\tau}(k)$. The previous equation can be expressed by

$$
\tilde{\mathbf{d}}_{\tau}=\sigma_{\tau} \mathbf{V}_{\tau}^{T} \mathbf{u}_{\tau}
$$

where \mathbf{V}_{τ}^{T} is a $(N+1) \times(M+N+1)$ banded Toeplitz matrix.

- The banded Toeplitz matrix given by

$$
\mathbf{V}_{\tau}^{T}=\left[\begin{array}{ccccc}
v_{\tau}(0) & \ldots & v_{\tau}(M) & & \mathrm{O}_{N} \\
& \ddots & \ddots & \ddots & \\
\mathrm{O}_{N} & & v_{\tau}(0) & \ldots & v_{\tau}(M)
\end{array}\right]
$$

It may be shown that: $\mathbf{I}=\frac{1}{M+1} \sum_{\tau=0}^{M}\left(\mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau}\right)$.

- Where $\mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau}$ is a symmetric Toeplitz matrix of dimension $(N+1) \times(N+1)$, formed by the autocorrelations coefficients, of the eigenvector \mathbf{v}_{τ}. By multiplying I by \mathbf{d} we obtain:
$\mathbf{d}=\frac{1}{M+1} \sum_{\tau=0}^{M}\left(\mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau}\right) \mathbf{d}=\frac{1}{M+1} \sum_{\tau=0}^{M} \widetilde{\mathbf{d}}_{\tau} \quad$ where $\quad \tilde{\mathbf{d}}_{\tau}=\mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau} \mathbf{d}$.
- The data vector \mathbf{d} may be decomposed in terms of the eigentraces $\widetilde{\mathbf{d}}_{\tau}$.

■ From equation:

$$
\tilde{\mathbf{d}}_{\tau}=\mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau} \mathbf{d}
$$

■ We see that the output trace of the eigenimage number τ is the convolution of the data vector \mathbf{d} with the autocorrelation of the eigenvector \mathbf{v}_{τ}.

■ Since the autocorrelation is zero phase, the phase of the output trace is equal to the phase of the data trace.

Iterative and recursive signal decomposition via SSA

■ We use the SSA method to iteratively decompose a signal into high and low energy components using a three-loop algorithm.

■ In the inner loop we compute a high-energy component of the signal by recursions in the number of rows in the trajectory matrix using only the first right singular vector, corresponding to the component with highest energy.

- The result is subtracted from the input signal in the second loop and the process is repeated. This gives an estimate of the low-energy part of the signal.

■ In the outer loop this low-energy signal is subtracted from the input signal and the result is output as one signal component.

■ The whole procedure is then repeated with the low-energy component as the new input signal.

Algorithm to iterative and recursive signal decomposition via SSA

```
Initial vector
\(\mathbf{d}_{1}=\mathbf{d}\)
DO \(k=1, \ldots, K \quad\) (Components )
    \(M=\max \{1, K-k+1\}\)
    \(\widehat{\mathbf{d}}_{\mathrm{O}}=\mathbf{d}_{k}\)
```



```
            \(\widetilde{\mathbf{d}}_{\mathrm{O}}=\widehat{\mathbf{d}}_{j-1}\)
            DO \(\tau=1, \ldots, M \quad\) ( Recursion in order \(M\) )
            - Form the matrix \(\mathbf{D}_{\tau}=\left[\overline{\mathbf{d}}_{\mathrm{O}} \ldots \overline{\mathbf{d}}_{\tau}\right]\) from \(\widetilde{\mathbf{d}}_{\tau-1}\)
            - Compute the first right singular vector \(\mathbf{v}_{O}\)
                (of dimension \((\tau+1) \times 1\) )
            - Compute the auto-correlation of \(\mathbf{v}_{\mathrm{O}}\),
                \(\mathbf{r}_{\tau}=\left(1, r_{\tau}(1), \ldots, r_{\tau}(\tau)\right)^{T}\)
            - Compute the update \(\widetilde{\mathbf{d}}_{\tau}=\mathbf{V}_{\tau}^{T} \mathbf{V}_{\tau} \widetilde{\mathbf{d}}_{\tau-1}\)
                (equation (11))
            ENDDO
            \(\widehat{\mathbf{d}}_{j}=\widehat{\mathbf{d}}_{j-1}-\widetilde{\mathbf{d}}_{M}\)
        ENDDO
        Output \(\mathbf{x}_{k}=\mathbf{d}_{k}-\widehat{\mathbf{d}}_{J}\)
        \(\mathbf{d}_{k+1}=\widehat{\mathbf{d}}_{J}\)
ENDDO
```


Time-frequency representation using AR coefficients

- From each estimated signal component $x(t)$ we form the analytic signal

$$
\begin{equation*}
z(t)=x(t)+i y(t) \tag{1}
\end{equation*}
$$

■ where $y(t)$ is the Hilbert transform of $x(t)$. For a data window $\{z(t-L \Delta t), \ldots, z(t), \ldots, z(t+L \Delta t)\}$ (Δt is the sample interval) we define the instantaneous auto-correlation,

$$
\begin{equation*}
R_{t}(\tau)=w_{t}(\tau) \oplus w_{t}^{*}(\tau)=A_{t}(\tau) e^{i \phi_{t}(\tau)} \tag{2}
\end{equation*}
$$

■ where $w_{t}(\tau)=\left\{1, c(t), c(t)^{2}, \ldots, c(t)^{\infty}\right\}$ is the minimum-phase wavelet corresponding to the inverse of the prediction error operator of order $1,\{1,-c(t)\}, \oplus$ represents correlation and $*$ represents complex conjugate.

Time-frequency representation using AR coefficients

- The coefficient $c(t)$ may be computed by using the Burg algorithm (Burg, 1975). We remark that $|c(t)|<1$. It may be shown that,

$$
\begin{equation*}
R_{t}(\tau)=R_{t}(0) w_{t}(\tau), \tau \geq 0 \tag{3}
\end{equation*}
$$

where $R_{t}(0)=1 /\left(1-c(t) c^{*}(t)\right)$. The normalized derivative of eq. (2) gives,

$$
\begin{equation*}
\frac{R_{t}^{\prime}(\tau)}{R_{t}(\tau)}=\frac{A_{t}^{\prime}(\tau)}{A_{t}(\tau)}+i \phi_{t}^{\prime}(\tau) \tag{4}
\end{equation*}
$$

where,

$$
\begin{equation*}
\phi_{t}^{\prime}(0)=\left.\frac{d \phi_{t}(\tau)}{d \tau}\right|_{\tau=0}=2 \pi f(t)=\left.\frac{1}{R_{t}(0)} \operatorname{Imag}\left\{R_{t}^{\prime}(\tau)\right\}\right|_{\tau=0} \tag{5}
\end{equation*}
$$

Time-frequency representation using AR coefficients

- Similar equation was presented by Zoukaneri and Porsani (2015). Taking into considerations the characteristics of the minimum-phase wavelet, $w_{t}(\tau)$, and both the anti-symmetries of the derivative operator, and the imaginary part of the auto-correlation function $R_{t}(\tau)$ one obtains the equation for the instantaneous frequency,

$$
\begin{equation*}
f(t)=\frac{1}{\pi \Delta t} \operatorname{Imag}\left\{\sum_{n=1}^{\infty} \frac{(-1)^{n-1} c(t)^{n}}{n}\right\} \tag{6}
\end{equation*}
$$

Additionally, it can be shown that equation (6) may be written as,

$$
\begin{align*}
f(t) & =\frac{1}{\pi \Delta t} \operatorname{Imag}\{\log (1+c(t))\}=\frac{1}{\pi \Delta t} \arg (1+c(t)) \\
& =\frac{1}{\pi \Delta t} \arctan \left\{\frac{\operatorname{Imag}\{c(t)\}}{1+\operatorname{real}\{c(t)\}}\right\} . \tag{7}
\end{align*}
$$

Time-frequency representation using AR coefficients

■ Then a time-frequency representation of the signal component $x_{k}(t)$ is given by

$$
\begin{equation*}
D_{k}(t, f)=\sqrt{z_{k}(t) z_{k}^{*}(t)} \delta\left(f-f_{k}(t)\right) \tag{8}
\end{equation*}
$$

- The following pseudo-code illustrates the process:

DO $k=1, \ldots, K \quad$ (Components)

- compute the complex trace $z_{k}(t)=x_{k}(t)+i y_{k}(t)$
- compute the coefficients $c_{k}(t)$
- compute the instantaneous frequency $f_{k}(t)$ (eq. (7))
- obtain the time-frequency representation $D_{k}(t, f)$ (eq. (8)) ENDDO

Numerical example

\triangleright Real seismic data:

■ Illustrates the decomposition of a seismic trace into five eigentraces;

- The single-channel SSA method was applied to each trace of the split-spread shot gather to test effect of the recursion and iterations;

■ Generate of the average amplitude spectra of the shot gathers obtained after applications of single-channel SSA method.

Figure 1: Decomposition of a seismic trace. Signal components 0 to 4, from high energy to low energy corresponding to (a), (b), (c), (d), (e), respectively. The sum of the components in (f) and the original seismic trace in (g).

Figure 2: The result of SSA with $M=11$ recursions in matrix dimension and $J=20$ iterations in frequency content. The original shot gather in (a), the high-frequency part in (b), and the low-frequency part in (c).

(a)

Figure 3: Average amplitude spectra of the data in Fig. 2a with $M=11$ and no recursions (a), with $M=11$ recursions in matrix dimension (b), and with $M=11$ recursions in matrix dimension and $J=20$ iterations in frequency content (c).
\triangleright The synthetic signal we analyze is a sum of five elements:

$s_{1}(t)=0.8 \cos (30 \pi t)$	$0 s \leq t \leq 6 s$
$s_{2}(t)=0.6 \cos (70 \pi t)$	$0 s \leq t \leq 6 s$
$s_{3}(t)=0.7 \cos (130 \pi t)+5 \sin (2 \pi t)$	$4 s \leq t \leq 8 s$
$s_{4}(t)=\sin \left\{\frac{8 \pi 100^{t / 8}}{\log (100)}\right\}$	$6 s \leq t \leq 10 s$
$s_{5}(t)=3 e^{-1250(t-2)^{2}} \cos (710(t-2))$	$0 s \leq t \leq 10 s$

- It is composed of two harmonic components with frequency of 15 and 35 Hz , a frequency-modulated harmonic around 65 Hz , a sliding harmonic from 35 to 158 Hz , and a Morlet wavelet with central frequency of approximated 113 Hz .
■ We generate a composite signal and decomposed using the pseudo-code with $\mathrm{K}=15$ components and $\mathrm{J}=200$ iterations.
■ We sum the 15 different signal components into four new signal components with their time-frequency representation. The sum of these gives the composite time-frequency representation is shown.

Figure 4: Decomposition of the signal (Original) in top of the figure and 15 signal components.

NTNU, 2018
UFBA - Federal University of the Bahia

Figure 5: Time-frequency representation of the signal components shown in Figure 4. A window length equal to $2 L+1=23$ data samples was used for computation of the AR coefficients.

Figure 6: Decomposition of the signal (Original) in top of the figure by combining the signal components in common signal groups.

Figure 7: Time-frequency representation of the signal components shown in Figure 6. A window length equal to $2 L+1=23$ data samples was used for computation of the AR coefficients.

Figure 8: Composite time-frequency representation of the signal shown in Figure 6.

Conclusions

■ We proposed an iterative and recursive signal decomposition algorithm based on the SSA method. We demonstrated that the output corresponds to filtering the time series with a zero-phase filter, which is the auto-correlation of the first eigenvector of the covariance matrix of the input signal;

- From the analytic signal and AR modeling we derived a new equation to compute the instantaneous frequency which depend on a single AR coefficient. From each individual component a time-frequency representation is obtained and the sum of these gives a time-frequency distribution of the input signal;
- Application to a synthetic data example shows that the method gives good results compared with other published algorithms.

Acknowledgements

■ INCT-GP/CNPq/MCT, ANP, PETROBRAS, FINEP, FAPESB Brazil for financial support;

- Bjorn Ursin has received financial support from Statoil Brazil, from CNPq, Brazil through the project no 400757/2014-1, and from the Norwegian Research Council through the ROSE project.

EHR PETROBRAS

FINEP

THANK YOU

