Gas leakage through shallow sediments – laboratory experiments compared to passive and active seismic data

M. Landrø, P. Ringrose, D. Wehner and N. Vedvik and K. Berteussen

Repeated 2D lines acquired in 2009

In this study we will use brute stacks from 602 and 804

Line 804 difference between 2009 and 1990, difference is scaled by t^1.3

Smoothed timeshifts – line 602 (upper sand)

Note: Significant time shift increase close to relief well between 1990 and 2009

Line 804; 1990: 2/4-14 well is drilled in the middle of a shallow tunnel valley; 30 m below seabed

3 interpreted tunnel valleys shown by arrows marking the three depressions and subsequent erosion patterns below

Tunnel valleys

Might store large volumes of gas (and CO_2) – and also serve as transport routes

Seismic interpretation of tunnel valleys close to the blow out well:

Interpreted tunnel valleys from 2D and 3D seismic data (Hanne Halvorsen's MSc-thesis)

Interpreted tunnel valleys

Work by K. Haavik

Line 804 – shallow timeshifts – indications of leakage

patterns

- Alignment of seabed reflection to 100 ms
- Near to the well: significant increase in timeshift between 88 and 90 followed by a reduction back to pre-blowout values again – 800 m width
- Outside this region the situation is unchanged between 1990 and 2009

Line 804: 1988-1990 Time shift of 3-4 ms gradually decreasing away from well position

Safe Britannia

Nedrill Trigon

Passive Seismic Listening:

Acquisition geometry and example of seismic data from period 33

Event location (September 1989) assuming source at 492 m and 250 m

If we assume shallower source depth (half for instance) the horizontal scale will change from +/- 500 m to +-250 m

Sand tank experiment and leakage at 2/4-14 well

Similar structures in laboratory and field

Noise log measured in May 1989 in the relief well

Source: C. Slungaard, 1991

Temperature logs, blowing well

Noise logs recorded in the blowing well (14)

The 2008 Tordis event – very different from 1989 2/4-14

- Overburden is very different: Claydominated sequence at Tordis
- Source mechanism is different although same depth (900 m): Pump versus underground flow

Sand tank experiment

Grain size: 130 micrometer Thickness of sand: 0.25 m Air injected through 0.4 mm hole

$$\alpha = v / v_a$$

is the ratio between the formation *P*-wave velocity and the apparent velocity measured by the geophone array

Magmaflow at Iceland: Bardarbunga-Holuhran dike intrusion - 2014

Seismic event location along the dike – 15 days

Similarities – but very different source mechanisms

Summary

Experiment

before air injection

directly after air injection

ca. 30 min. after air injection

ca. 60 min. after air injection

air was released due to artificial earthquake (hitting the cylinder with a hammer from the side)

simple depth estimation of events:

$$\frac{v}{2} * t = z, \qquad v \approx 1700 \frac{m}{s}$$

L.) z = 8 cm 4.) z = 30 cm
2.) z = 21 cm 5.) z = 40 cm
3.) z = 26 cm 6.) z = 51 cm

First look

artificial earthquake

rec-nr.: 425