Normal modes in an orthorhombic medium

Yuriy Ivanov* and Alexey Stovas

IGP, NTNU

April 23rd, 2018 RoSe meeting

- Orthorhombic media
- Normal modes in ORT
- Numerical example
- Discussion and conclusion
- Acknowledgments

References

Normal modes

Numerical example

Discussion and conclusion

Normal modes?

Figure 1: Sketch of a guided wave propagation. Vertical scale exaggerated.

Figure 2: Typical marine common-shot gather (Wang et al., 2016).

Numerical example

Discussion and conclusion

Normal modes

Figure 3: Sketch of a guided wave propagation. Vertical scale exaggerated.

Period equation: phase velocity

Acoustic case¹:

(1)

¹Pekeris (1948); Press and Ewing (1950); Landrø and Hatchell (2012)

(1)

Normal modes

Period equation: phase velocity

Acoustic case¹:

where $\mathbf{k} = \omega \mathbf{c}^{-1}$.

¹Pekeris (1948); Press and Ewing (1950); Landrø and Hatchell (2012)

(1)

Normal modes

Period equation: phase velocity

Acoustic case¹:

$$an \mathbf{k} H \sqrt{rac{m{c}^2}{V_w^2} - 1} = -rac{
ho}{
ho_w} rac{\sqrt{rac{m{c}^2}{V_w^2} - 1}}{\sqrt{1 - rac{m{c}^2}{V_b^2}}},$$

where $\mathbf{k} = \omega \mathbf{c}^{-1}$.

$$c = c(\omega).$$

¹Pekeris (1948); Press and Ewing (1950); Landrø and Hatchell (2012)

Numerical example

Discussion and conclusion

Normal modes

Figure 4: Estimated phase velocity dispersion curves (Hatchell and Mehta, 2010).

Period equation: group velocity

Group (envelope or modulation) velocity:

$$U=rac{d\omega}{dk},$$

(2)

Period equation: group velocity

Group (envelope or modulation) velocity:

$$U=\frac{d\omega}{dk},$$

Solving the period equation (5),

$$U = U(\omega).$$

(2)

Numerical example

Discussion and conclusion

Normal modes

Figure 5: Frequency analysis: group and phase velocity dispersion (Landrø and Hatchell, 2012).

Orthorhombic media

Normal modes in ORT

Numerical example

Discussion and conclusion

Normal modes

Signal or noise?

Shallow marine sediments characterization,

Orthorhombic media

Normal modes in ORT

Numerical example

Discussion and conclusion

Normal modes

Signal or noise?

Shallow marine sediments characterization,

▶ Better denoising.

Orthorhombic media

Discussion and conclusion

Orthorhombic media?

Anisotropic symmetry class,

Discussion and conclusion

Orthorhombic media?

• Anisotropic symmetry class, $\rightarrow V = V(\alpha, \theta),$

Anisotropic symmetry class,

$$\rightarrow V = V(\alpha, \theta),$$

 $\rightarrow~$ 1x P-wave, 2x S-waves,

Anisotropic symmetry class,

- $\rightarrow V = V(\alpha, \theta)$,
- $\rightarrow~$ 1x P-wave, 2x S-waves,

Three mutually orthogonal planes of mirror symmetry,

Anisotropic symmetry class,

- $\rightarrow V = V(\alpha, \theta)$,
- $\rightarrow~$ 1x P-wave, 2x S-waves,
- Three mutually orthogonal planes of mirror symmetry,
- ▶ 9 (nine) independent parameters + density,

Anisotropic symmetry class,

- $\rightarrow V = V(\alpha, \theta)$,
- $\rightarrow~$ 1x P-wave, 2x S-waves,
- Three mutually orthogonal planes of mirror symmetry,
- ▶ 9 (nine) independent parameters + density,
- Suitable for description of fractured (and layered) rocks.

Discussion and conclusion

Orthorhombic media!

Figure 6: Fractured sandstone: orthorhombic symmetry.

14 of 40

Orthorhombic media

Normal modes in ORT

Numerical example

Discussion and conclusion

Orthorhombic media

Hooke's law

$\sigma = c\epsilon$,

Orthorhombic media

Normal modes in ORT

Numerical example

Discussion and conclusion

Orthorhombic media

Hooke's law

$\sigma = c\epsilon,$

(3)

stress tensor

Orthorhombic media

Normal modes in ORT

Numerical example

Discussion and conclusion

(3)

Orthorhombic media

Hooke's law

$\sigma = c\epsilon,$

stress tensor strain tensor

15 of 40

Orthorhombic media

Normal modes in ORT

Numerical example

Discussion and conclusion

Orthorhombic media

Hooke's law

$\boldsymbol{\sigma} = \boldsymbol{c}\boldsymbol{\epsilon}, \qquad (3)$ stress tensor strain tensor stiffness tensor

Orthorhombic media

Stiffness tensor

(4)

Normal modes in orthorhombic media

► A classical problem with a practical potential:

A classical problem with a practical potential: VTI is a feasible model²,

²Landrø and Hatchell (2012); Skopintseva et al. (2013)

► A classical problem with a practical potential:

- ► VTI is a feasible model²,
- Sub-vertical fractures in gas-hydrate bearing sediments³,

 $^{^{2}}$ Landrø and Hatchell (2012); Skopintseva et al. (2013) 3 Lee and Collett (2009); Cook et al. (2010)

- ► A classical problem with a practical potential:
- ► VTI is a feasible model²,
- Sub-vertical fractures in gas-hydrate bearing sediments³,
- ► Intersecting fracture systems⁴,

²Landrø and Hatchell (2012); Skopintseva et al. (2013)

³Lee and Collett (2009); Cook et al. (2010)

⁴Sriram et al. (2013)

- ► A classical problem with a practical potential:
- ► VTI is a feasible model²,
- Sub-vertical fractures in gas-hydrate bearing sediments³,
- ► Intersecting fracture systems⁴,
- ▶ 15% azimuthal anisotropy⁵.

²Landrø and Hatchell (2012); Skopintseva et al. (2013)

- ³Lee and Collett (2009); Cook et al. (2010)
- ⁴Sriram et al. (2013)

⁵Kumar et al. (2006)

Acoustic case

Figure 7: Sketch of a guided wave propagation. Vertical scale exaggerated.

Orthorhombic case

Figure 8: Sketch of a guided wave propagation. Vertical scale exaggerated.
Elastic orthorhombic media: phase velocity

Ivanov and Stovas (2017):

$$\tan k_{r} H \sqrt{\frac{c^{2}}{V_{w}^{2}} - 1} = \frac{\sqrt{\frac{c^{2}}{V_{w}^{2}} - 1}}{c^{2} \rho_{w}} \left(\rho c^{2} - c_{44} \sin \alpha^{2} - c_{55} \cos \alpha^{2}\right) \times$$

$$\frac{c_{13} \cos \alpha^{2} + c_{23} \sin \alpha^{2} + \rho c^{2} - c_{33} (\nu_{1} \nu_{3} + \nu_{2} \nu_{3} + \nu_{1} \nu_{2})}{(\nu_{1} + \nu_{2} + \nu_{3}) \left(\rho c^{2} - c_{44} \sin^{2} \alpha - c_{55} \cos^{2} \alpha\right) - c_{33} \nu_{1} \nu_{2} \nu_{3}}.$$
(5)

Elastic orthorhombic media: phase velocity

Ivanov and Stovas (2017):

$$\tan k_{r} H \sqrt{\frac{c^{2}}{V_{w}^{2}} - 1} = \frac{\sqrt{\frac{c^{2}}{V_{w}^{2}} - 1}}{c^{2} \rho_{w}} \left(\rho c^{2} - c_{44} \sin \alpha^{2} - c_{55} \cos \alpha^{2}\right) \times$$

$$\frac{c_{13} \cos \alpha^{2} + c_{23} \sin \alpha^{2} + \rho c^{2} - c_{33} (\nu_{1} \nu_{3} + \nu_{2} \nu_{3} + \nu_{1} \nu_{2})}{(\nu_{1} + \nu_{2} + \nu_{3}) \left(\rho c^{2} - c_{44} \sin^{2} \alpha - c_{55} \cos^{2} \alpha\right) - c_{33} \nu_{1} \nu_{2} \nu_{3}}.$$
(5)

radial wavenumber

Elastic orthorhombic media: phase velocity

Ivanov and Stovas (2017):

$$\tan k_{r} H \sqrt{\frac{c^{2}}{V_{w}^{2}} - 1} = \frac{\sqrt{\frac{c^{2}}{V_{w}^{2}} - 1}}{c^{2} \rho_{w}} \left(\rho c^{2} - c_{44} \sin \alpha^{2} - c_{55} \cos \alpha^{2}\right) \times$$

$$\frac{c_{13} \cos \alpha^{2} + c_{23} \sin \alpha^{2} + \rho c^{2} - c_{33} (\nu_{1} \nu_{3} + \nu_{2} \nu_{3} + \nu_{1} \nu_{2})}{(\nu_{1} + \nu_{2} + \nu_{3}) \left(\rho c^{2} - c_{44} \sin^{2} \alpha - c_{55} \cos^{2} \alpha\right) - c_{33} \nu_{1} \nu_{2} \nu_{3}}.$$
(5)

radial wavenumber

phase azimuth

Elastic orthorhombic media: phase velocity

Ivanov and Stovas (2017):

$$\tan k_{r} H \sqrt{\frac{c^{2}}{V_{w}^{2}} - 1} = \frac{\sqrt{\frac{c^{2}}{V_{w}^{2}} - 1}}{c^{2} \rho_{w}} \left(\rho c^{2} - c_{44} \sin \alpha^{2} - c_{55} \cos \alpha^{2}\right) \times$$

$$\frac{c_{13} \cos \alpha^{2} + c_{23} \sin \alpha^{2} + \rho c^{2} - c_{33} (\nu_{1} \nu_{3} + \nu_{2} \nu_{3} + \nu_{1} \nu_{2})}{(\nu_{1} + \nu_{2} + \nu_{3}) \left(\rho c^{2} - c_{44} \sin^{2} \alpha - c_{55} \cos^{2} \alpha\right) - c_{33} \nu_{1} \nu_{2} \nu_{3}}.$$
(5)

radial wavenumber

phase azimuth

P/S1/S2-waves attenuation coefficients

.

(6)

Numerical example

Model

$$\mathbf{C} = egin{pmatrix} 9 & 2.25 & 3.6 & & & \ 5.94 & 2.4 & & & \ & 9.84 & 0 & & \ & & & & 2.182 & \ & & & & & 1.6 \end{pmatrix}$$

 $ho /
ho_{w} =$ 1.56, $V_{w} =$ 1.485 km s⁻¹, H = 0.075 km.

Elastic orthorhombic media: group velocity

Group velocity vector:

$$\mathbf{J} = \frac{d\omega}{d\mathbf{k}} \tag{7}$$

Elastic orthorhombic media: group velocity

Group velocity vector:

$$\mathbf{U} = \frac{d\omega}{d\mathbf{k}} = \{U_r, U_\alpha\},\tag{7}$$

Elastic orthorhombic media: group velocity

Group velocity vector:

$$\mathbf{U} = \frac{d\omega}{d\mathbf{k}} = \{U_r, U_\alpha\},\tag{7}$$

Steering angle:

$$\beta = \tan^{-1} \frac{U_{\alpha}}{U_r},\tag{8}$$

Elastic orthorhombic media: group velocity

Group velocity vector:

$$\mathbf{U} = \frac{d\omega}{d\mathbf{k}} = \{U_r, U_\alpha\},\tag{7}$$

Steering angle:

$$\beta = \tan^{-1} \frac{U_{\alpha}}{U_r},\tag{8}$$

Group azimuth:

$$\phi = \alpha + \beta. \tag{9}$$

Group velocity

Figure 10: Schematic of the phase and group velocity vectors relation (horizontal plane).

Numerical example

26 of 40

Useful simplification

٠

Orthorhombic media

Stiffness tensor

$$\mathbf{C} = egin{pmatrix} c_{11} & c_{12} & c_{13} & & & \ & c_{22} & c_{23} & & & \ & & c_{33} & & & \ & & & c_{44} & & \ & & & & c_{55} & \ & & & & & c_{66} \end{pmatrix}$$

Ellipsoidal orthorhombic media

Stiffness tensor

(12)

Ellipsoidal orthorhombic media

Period equation

$$\tan k_r H \sqrt{\frac{c^2}{V_w^2} - 1} = -\frac{\rho}{\rho_w} \frac{\sqrt{\frac{c^2}{V_w^2} - 1}}{\sqrt{\frac{V_2^2 \sin^2 \alpha + V_1^2 \cos^2 \alpha}{V_3^2} - \frac{c^2}{V_3^2}}}.$$

Discussion and conclusion

Acoustic media

Period equation

$$\tan kH \sqrt{\frac{c^2}{V_w^2} - 1} = -\frac{\rho}{\rho_w} \frac{\sqrt{\frac{c^2}{V_w^2} - 1}}{\sqrt{1 - \frac{c^2}{V_b^2}}}.$$

(13)

Ellipsoidal orthorhombic media

Group-velocity limits

$$\{U_r, U_\alpha\}|_{\omega\to\infty} = \{V_w, 0\},\$$

Ellipsoidal orthorhombic media

Group-velocity limits

$$\left\{ U_{r}, U_{\alpha} \right\}|_{\omega \to \infty} = \left\{ V_{w}, 0 \right\},$$

$$\left\{ U_r, U_\alpha \right\}|_{\omega \to \omega_{\text{cut-off}}} = \left\{ \sqrt{V_2^2 \sin^2 \alpha + V_1^2 \cos^2 \alpha}, \frac{(V_1^2 - V_2^2) \sin \alpha \cos \alpha}{\sqrt{V_2^2 \sin^2 \alpha + V_1^2 \cos^2 \alpha}} \right\},$$
(14)

Orthorhombic media

Normal modes in ORT

Numerical example

Discussion and conclusion

Period equation in orthorhombic media,

Discussion and conclusion

Period equation in orthorhombic media,

Ellipsoidal approximation,

Period equation in orthorhombic media,

- Ellipsoidal approximation,
- Group velocity vector,

- Period equation in orthorhombic media,
- Ellipsoidal approximation,
- Group velocity vector,
- Potential use for water-bottom sediments characterization.

Numerical example

Discussion and conclusion

Acknowledgments

Numerical example

Discussion and conclusion

Acknowledgments

Numerical example

Discussion and conclusion

Acknowledgments

References I

- Cook, A., B. Anderson, A. Malinverno, S. Mrozewski, and D. Goldberg, 2010, Electrical anisotropy due to gas hydrate-filled fractures: Geophysics, **75**, F173–F185.
- Hatchell, P., and K. Mehta, 2010, Ocean Bottom Seismic (OBS) timing drift correction using passive seismic data: 80th Annual International Meeting, SEG, Expanded Abstracts, 2054–2058.
- Ivanov, Y., and A. Stovas, 2017, Normal Modes in Orthorhombic Media: 79th EAGE Conference and Exhibition, EAGE, Extended Abstracts, We P6 03.
- Kumar, D., M. K. Sen, N. L. Bangs, C. Wang, and I. Pecher, 2006, Seismic anisotropy at Hydrate Ridge: Geophysical Research Letters, **33**, L01306.
- Landrø, M., and P. Hatchell, 2012, Normal modes in seismic data Revisited: Geophysics, 77, W27–W40.
- Lee, M. W., and T. S. Collett, 2009, Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India: Journal of Geophysical Research: Solid Earth, **114**, B07102.
- Pekeris, C. L., 1948, Theory of Propagation of Explosive Sound in Shallow Water: Geological Society of America Memoirs, **27**, 1–116.
- Press, F., and M. Ewing, 1950, Propagation of explosive sound in a liquid layer overlying a semi-infinite elastic solid: Geophysics, **15**, 426–446.

References II

- Skopintseva, L. V., M. Landrø, and A. Stovas, 2013, Normal Modes in Anisotropic VTI Media: 75th EAGE Conference and Exhibition, Th P03 07.
- Sriram, G., P. Dewangan, T. Ramprasad, and P. Rama Rao, 2013, Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit: Journal of Geophysical Research: Solid Earth, **118**, 2258–2274.
- Wang, J., R. Stewart, N. Dyaur, and M. Bell, 2016, Marine guided waves: Subbottom property estimation and filtering using physical modeling data: Geophysics, **81**, V303–V315.