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On some unsolved issues in shale rock physics 
How do we model compaction, cementation and uplift of shales? 



Motivation: Why are shales important in QI?

• Shales comprise most of the overburden rocks.

• Normal compaction trends of shales can be used to 
estimate uplift.

• Shales define the background trend in AVO data

• Shales, as cap-rocks, impacts the AVO reflectivities of 
top and base of reservoirs.

• Organic-rich shales are the most common source rocks. 

• Intra-reservoir shales contribute to reservoir 
heterogeneity, baffles and barriers for fluid flow. 

Terracotta Army, Xian, China (200 bC).



Key issue: How to extrapolate shale properties away from wells? 

• How do we extrapolate elastic properties of shales 
away from wells? 

• How do we best model rock physics properties of 
shales during burial and uplift? (Porosity and velocity 
versus depth). 

• How do we take into account stress sensitivity in 
shales?

• How do we best model chemical compaction and 
cementation in shales? 

• How do we discriminate depositional trends and 
diagenetic trends in shales? 



Sand and shale compaction trends in the North Sea 

Quartz cementation starts at around 70 degrees C. Hence, North Sea 
Paleocene sands can both be unconsolidated and cemented. Shales 
transform from smectite-rich to illite-rich at around the same temperature. 



Mechanical versus chemical compaction of shales. 
Experimental observations (Mondol et al. 2008) and rock-physics 
modeling (Dræge et al., 2006).



Documentation of chemical compaction and quartz 
cementation in shales.

Storvoll and Brevik, 2008

Thyberg et al., 2009



Depth trend modeling of shales
(Avseth et al., 2008)
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Rock physics and AVO modeling constrained
by burial history
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A «typical» present day
geo-section offshore Norway
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«Restoring» geo-section to maximum burial. 
Have prospects been into the frying pan?
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The “Frying Pan”
(T>70 C required 
for Qz-cem. )



Burial constrained AVO
modeling at “Discovery” well.
(Campanian sands w/oil give AVO class III)
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Burial constrained AVO modeling at prospect C 
(Aptian sst)
Oil-filled sst = AVO class IIp
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Barents Sea Example: Acoustic impedance (water-
saturated) vs. porosity along south-north well log profile

Uplift map
(Johansen, 2017)
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Sandstones of Stø Fm are getting increasingly stiffer northwards, likely related to increasing maximum 
burial. Fuglen shales show a significant trend change in northern wells (Atlantis and Apollo), likely related to 
illitization and micro-crystalline cementation of shales (see Thyberg et al., 2009; Storvoll and Brevik, 2008).
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Expected AVO signatures at Top Stø: Class III 
AVO for both oil and gas. 

Gas Oil Brine



Zoomed in further: 
Expected AVO class IIp-II for oil and gas.

Gas Oil Brine



Hoop Area – Burial history affect seismic
signatures (due to changes in both shales and sst)
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Chemical compaction

Mechanical
compaction

Schematic illustration of burial history,  
rock consolidation and AVO signatures
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Shale depth trends (w/uplift) in Hoop area
Fuglen Fm (cap-rock of Stø Fm)
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Rock physics modeling of Wisting and Atlantis 
caprock shale (Fuglen Fm)
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The road ahead – Improved understanding of 
shale RP properties during burial and uplift
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Interesting issues to consider: 

• Can we apply a Walderhaug-type cement 
model for shales? (Cementation both 
during subsidence and uplift if T>Tc)

• Can more realistic shale trends give better 
velocity and anisotropy predictions?

• Do we need to honour stress anisotropy 
during uplift?

• Implications for seal integrity?


