Mohammed Sourouri¹ Espen Birger Raknes^{2,3}

Norwegian University of Science and Technology (NTNU)

April 25, 2017

1 Department of Electronic Systems

2 AkerBP

3 Work conducted when part of Department of Geoscience and Petroleum

Mohammed Sourouri¹ Espen Birger Raknes^{2,3}

Norwegian University of Science and Technology (NTNU)

April 25, 2017

1 Department of Electronic Systems

2 AkerBP

3 Work conducted when part of Department of Geoscience and Petroleum

[nvidia.com]

[opencl.org]

Mohammed Sourouri¹ Espen Birger Raknes^{2,3}

Norwegian University of Science and Technology (NTNU)

April 25, 2017

1 Department of Electronic Systems

2 AkerBP

3 Work conducted when part of Department of Geoscience and Petroleum

[newsroom.intel.com]

Mohammed Sourouri¹ Espen Birger Raknes^{2,3}

Norwegian University of Science and Technology (NTNU)

April 25, 2017

1 Department of Electronic Systems

2 AkerBP

3 Work conducted when part of Department of Geoscience and Petroleum

	Tesla P100	Xeon Phi
FP32 SP	9.3 TFLOP/s	6 TFLOP/s
FP64 DP	4.7 TFLOP/s	3 TFLOP/s
Memory bandwidth	549 GB/s	475 GB/s 90 GB/s (DDR4)
Memory capacity	16 GB	16 GB 384 GB (DDR4)

3D Seismic Wave Simulator

3D Seismic Wave Simulator

3D Seismic Wave Simulator

3D Seismic Wave Simulator

Target application: A 3D Seismic Wave Simulator developed from ground-up at NTNU

Numerical framework¹

Staggered-grid explicit FD 8th order in space 2nd order in time

Memory-bound stencil application parallelized using OpenMP

3D elastodynamic wave equation

$$\begin{cases} \rho \dot{\upsilon}_{x} = \partial_{x} \sigma_{xx} + \partial_{y} \sigma_{xy} + \partial_{z} \sigma_{xz} + f_{x} \\ \rho \dot{\upsilon}_{y} = \partial_{x} \sigma_{xy} + \partial_{y} \sigma_{yy} + \partial_{z} \sigma_{yz} + f_{y} \\ \rho \dot{\upsilon}_{z} = \partial_{x} \sigma_{xz} + \partial_{y} \sigma_{yz} + \partial_{z} \sigma_{zz} + f_{z} \end{cases} \\ \begin{cases} \dot{\sigma}_{xx} = (\lambda + 2\mu) \partial_{x} \upsilon_{x} + \lambda (\partial_{y} \upsilon_{y} + \partial_{z} \upsilon_{z}) \\ \dot{\sigma}_{yy} = (\lambda + 2\mu) \partial_{y} \upsilon_{y} + \lambda (\partial_{x} \upsilon_{x} + \partial_{z} \upsilon_{z}) \\ \dot{\sigma}_{zz} = (\lambda + 2\mu) \partial_{z} \upsilon_{z} + \lambda (\partial_{x} \upsilon_{x} + \partial_{y} \upsilon_{y}) \\ \dot{\sigma}_{yz} = \mu (\partial_{y} \upsilon_{z} + \partial_{z} \upsilon_{y}) \\ \dot{\sigma}_{xz} = \mu (\partial_{x} \upsilon_{z} + \partial_{z} \upsilon_{x}) \\ \dot{\sigma}_{xy} = \mu (\partial_{x} \upsilon_{y} + \partial_{y} \upsilon_{x}) \end{cases} \end{cases}$$

¹ Espen Birger Raknes, Børge Arntsen, and Wiktor Weibull. 2015. Three- dimensional elastic full waveform inversion using seismic data from the Sleipner area. Geophysical Journal International 202, 3 (2015), 1877–1894. DOI: https://doi.org/10.1093/gji/ggv258

Target application: A 3D Seismic Wave Simulator developed from ground-up at NTNU

KNL based Xeon Phi: A cluster on chip

Tile

- Each tile consists of two x86 cores
- Communication via a 2D mesh interconnect

Core

- Each core has two 512 bit vector processing units (VPUs)
- Private 32KB L1 cache
- 1MB shared L2 cache

Memory

- 8x2GB MCDRAM
- Up to 384 GB DDR4 memory (three channels)

The memory architecture of KNL based Xeon Phis is user-configurable.

Baseline Xeon Phi results compared to a highly-tuned multi-core implementation.

By tuning the thread affinity, we can can further increase the performance.

Changing the memory policy (cache->flat) can have a dramatic impact on the performance.

In summary, we have shown that KNL can increase performance compared to multi-core x86 CPUs significantly

KNL provides a good blend of ease-of-use and performance

If the entire workload fits into MCDRAM, use flat mode, else cache mode is always a safe choice.

We have demonstrated that high performance can be achieved with only few steps.

