

ROSE MEETING

Shear waves in acoustic anisotropic media

Song Jin & Alexey Stovas, NTNU 24.04.2017 Trondheim

- Background
- New parameters defined from the slowness surface
- Group velocity surface
- Traveltime equation
- Relative geometrical spreading
- Conclusion

Background

- The acoustic VTI medium was firstly proposed by setting the $v_{S0} = 0$ (Alkhalifah, 1998).
- During modeling for acoustic VTI medium, diamond shaped waves propagate and was initially considered as artefacts (Alkhalifah, 2000).
- This artefacts were S-waves, and acoustic VTI medium can also be practical from the upscaling point of view (Grechka et al., 2004).
- Anomalously low S-wave velocity (10-50m/s) was observed in unconsolidated ocean-bottom sediments (Ayres and Theilen, 1999).

Background

According to the "long wave equivalent" medium theory (Backus, 1962), a stack of thin isotropic or transversely isotropic layers can be replaced with an effective medium.

$$C_{44} = \left\langle (C_{44}^k)^{-1} \right\rangle^{-1}$$
 If any layer has $C_{44}^k = 0$ (fluid layer), the effective $C_{44} = 0$ ($V_{50} = 0$).

Model: A binary medium composed of interlayering plane solid and fluid layers

 Solid layer
 $V_p = 3.00 km/s$ $V_s = 2.12 km/s$ $\rho = 2.00g/cm^3$

 Fluid layer
 $V_{Pf} = 1.50 km/s$ $V_{Pf} = 0.00 km/s$ $\rho_f = 1.00g/cm^3$

Background

Anisotropic parameters as the function of fluid volume fraction

The acoustic VTI medium can be strongly anisotropic.

- Background
- New parameters defined from the slowness surface
- Group velocity surface
- Traveltime equation
- Relative geometrical spreading
- Conclusion

New parameters defined from the slowness surface

For the acoustic VTI medium, the slowness surface is

$$q = \frac{1}{v_{P0}} \sqrt{\frac{(1+2\eta)v_{Pn}^2 p^2 - 1}{2\eta v_{Pn}^2 p^2 - 1}}$$

This equation works for both P- and S-waves, but separate branches.

There is no wave mode conversion

New parameters defined from the slowness surface

The vertical and horizontal S-wave group velocities V_{S0} and V_{SX} can be defined from the asymptotes as

$$V_{S0} = v_{P0} \sqrt{\frac{2\eta}{1+2\eta}}, \quad V_{SX} = v_{Pn} \sqrt{2\eta}$$

The new set of parameters to describe the S-wave propagation:

$$V_{S0}, V_{SX}$$
 and η

The slowness surface in acoustic VTI medium can be rewritten as

$$q = \frac{1}{V_{S0}} \sqrt{\frac{p^2 V_{SX}^2 + 2\eta (p^2 V_{SX}^2 - 1)}{(1 + 2\eta)(p^2 V_{SX}^2 - 1)}}$$

When
$$\eta = 0$$
, $q = \frac{1}{V_{S0}} \sqrt{\frac{p^2 V_{SX}^2}{p^2 V_{SX}^2 - 1}}$,

This is a reference medium for the S-wave propagation.

- Background
- New parameters defined from the slowness surface
- Group velocity surface
- Traveltime equation
- Relative geometrical spreading
- Conclusions

Group velocity surface

- V_G S-wave group velocity
- φ group angle (from the vertical symmetry axis)

Astroid equation

Group velocity surface

Model

v_{P0} (km/s)	v_{Pn} (km/s)	η	V_{S0} (km/s)	V _{SX} (km/s)	<i>z</i> ·(km)
2.00	2.20	0.50	1.40	2.20	1.00

 $V_{\rm GZ}(\rm km/s)$ 2.0 P-wave 1.5 1.0 $\eta = 0.5$ $\eta = 0.0$ 0.5 S-wave $V_{\rm GX}(\rm km/s)$ 0.0 3.0 2.0 0.5 1.0 1.5 2.5

Group velocity surface

- Background
- New parameters defined from the slowness surface
- Group velocity surface
- Traveltime equation
- Relative geometrical spreading
- Conclusion

S-wave traveltime equation

$$t^{2/3}(x) = t_{S0}^{2/3}(1 + \tilde{x}^{2/3} + \frac{2}{3}\eta \tilde{x}^{4/3} + ...)$$
, where $\tilde{x} = x / t_{S0}V_{Sn}$ and $V_{Sn} = V_{SX}\sqrt{1 + 2\eta}$

when $\eta = 0$, $t^{2/3}(x) = t_{S0}^{2/3}(1 + \tilde{x}^{2/3})$

traveltime curve

multi-layered model

layer	<i>z</i> ·(km)	η	V_{S0} (km/s)	V _{Sn} (km/s)
1	0.30	1.92	1.40	4.8
2	0.40	2.53	1.63	5.4
3	0.70	4.06	1.85	7.2
4	0.60	5.31	1.68	7.8
5	0.50	3.42	1.60	5.8

reflected wave traveltime curves from the bottom of each layer

S-wave in acoustic VTI medium avoids the events crossing at the large offset

 $p = \frac{dt}{dx}$

P-wave has crossing events at large offset

In acoustic VTI, S-wave avoids the events crossing at the large offset

P-wave Dix type equations $V_{P_0}^{\Sigma}$, $V_{P_n}^{\Sigma}$, η_P^{Σ}

 $t_{P_0}^{\Sigma} V_{P_0}^{\Sigma} = \sum t_{P_{0,j}} v_{P_{0,j}},$ $t_{P_0}^{\Sigma} (V_{P_n}^{\Sigma})^2 = \sum t_{P_{0,j}} v_{P_{n,j}}^2,$ $t_{P_0}^{\Sigma} (V_{P_n}^{\Sigma})^4 (1 + 8\eta_P^{\Sigma}) = \sum t_{P_{0,j}} v_{P_{n,j}}^4 (1 + 8\eta_j)$

S-wave Dix type equations

$$V_{S0}^{\Sigma}, V_{Sn}^{\Sigma}, \eta_{S}^{\Sigma}$$

$$t_{s_0}^{\Sigma} V_{s_0}^{\Sigma} = \sum t_{s_{0,j}} V_{s_{0,j}},$$

$$\frac{t_{s_0}^{\Sigma}}{(V_{s_n}^{\Sigma})^2} = \sum \frac{t_{s_{0,j}}}{V_{s_{n,j}}^2},$$

$$\frac{t_{s_0}^{\Sigma} (3 + 8\eta_s^{\Sigma})}{(V_{s_n}^{\Sigma})^4} = \sum \frac{t_{s_{0,j}} (3 + 8\eta_j)}{v_{s_{n,j}}^4}$$

Two-layered model

layer	v_{P0} (km/s)	v_{Pn} (km/s)	η	<i>V</i> _{S0} (km/s)	V _{Sn} (km/s)
1	2.00	2.20	0.10	0.82	1.08
2	2.00	2.20	0.40	1.34	2.64

P-wave effective parametersSolid line: P-wave Dix equationDashed line: S-wave Dix equation

S-wave effective parameters Dashed line: P-wave Dix equation Solid line: S-wave Dix equation

Effective acoustic VTI layer

$$V_{S0}^{\Sigma}, V_{Sn}^{\Sigma}, \eta_{S}^{\Sigma} \neq V_{P0}^{\Sigma}, V_{Pn}^{\Sigma}, \eta_{P}^{\Sigma}$$

- Background
- New parameters defined from the slowness surface
- Group velocity surface
- Traveltime equation
- Relative geometrical spreading
- Conclusion

Relative geometrical spreading

Relative geometrical spreading $L = \Omega * Ln$

radiation pattern

 $\Omega = \cos \varphi$

geometrical spreading factor

$$Ln = \left(Abs\left[\frac{x}{p}\frac{dx}{dp}\right]\right)^{1/2}$$

geometrical spreading factor as function of normalized offset

P-wave
$$Ln = t_{P0}V_{Pn}^{2}[1+(1+8\eta)\tilde{x}^{2}+...]$$

S-wave
$$Ln = t_{s_0} V_{s_n}^2 [\sqrt{3}\tilde{x}^{4/3} - \frac{\eta(3+4\eta)\tilde{x}^{8/3}}{3^{4/3}} + ...]$$

Relative geometrical spreading

the zero offset point represents a cusp point

- Background
- New parameters defined from the slowness surface
- Group velocity surface
- Traveltime equation
- Relative geometrical spreading
- Conclusion

Conclusion

- In acoustic VTI medium, P- and S-waves are defined by the same slowness surface equation
- New parameters are defined for S-wave
- S-wave group velocity surface is quasi-astroid shaped.
- We derive the S-wave traveltime equation
- S-wave relative geometrical spreading is zero at the zero offset

Thanks for the financial support by Rose project

Thanks for your attention