How can we approach the kHz range in laboratory rock physics?

Stian Rørheim¹

¹PhD Candidate at the Department of Geoscience and Petroleum Norwegian University of Science and Technology (NTNU) Supervised by Professor Rune M. Holt

24th of April, 2017

Objective

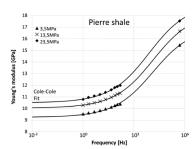


Figure: Modified from Szewczyk et al. (2016).

Objective

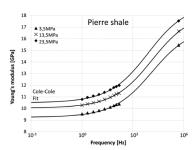
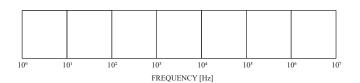
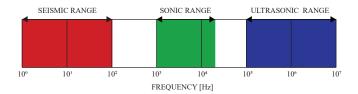


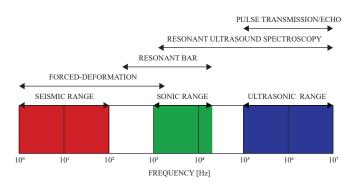
Figure: Modified from Szewczyk et al. (2016).

• In the words of Birch et al. (1938): "a respectable frequency gap remains to be bridged," as measurements between the seismic and the ultrasonic range are still quite rare.

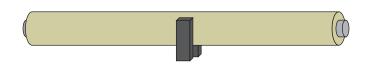

Literature

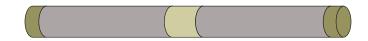
Author(s)	Technique	Frequency [kHz]	Length [cm]	Diameter [cm]	Parameter(s)
Batzle et al. (2006)	FD	0.005-2.50	-	-	$E, V_P, V_S Q_E$
Birch et al. (1938)	RB	0.14-4.50	244	23.0	Q
Born (1941)	RB	0.93-12.8	14.00-124.0	12.0	$\delta = \pi Q^{-1}$
Bourbié et al. (1985)	RB	3.00-5.00	-	-	V_E , Q
Cadoret et al. (1995)	RB	1.00	110	8.00	V_E , V_S , V_P
Cadoret et al. (1998)	RB	1.00	110	8.00	Q_S , Q_E
Gardner et al. (1964)	RB	2.00-3.00	5.00-30.0	5.00	δ_E , δ_S
Goldberg et al. (1989)	RB	5.00-25.0	25.0	2.50	Q_P
lde (1935)	RB	4.00-12.0	25.0	5.10	E
Jones et al. (1983)	RB	1.70-3.40	-	-	V, Q _S
Lucet et al. (1991)	RB	5.00-20.0	25.0-30.0	2.50	V_E , V_P , Q_E , Q_S
Lucet et al. (1992)	RB	3.00-10.0	30.0	2.50	Q_E
Lucet et al. (2006)	RB	2.00-20.0	-	-	QE, V _{sonic} /V _{ultrasonic} , V _{PP} /V _{PFB}
McCann et al. (2014)	PT	1.00-10.0	60.0	6.90	V_P , Q_P , T
Murphy (1982)	RB	0.30-14.0	20.0-100	-	V_S , V_E , Q_E , Q_S
Murphy (1984)	RB	5.00	20.0-25.0	19.0	V_S , V_E , Q_E , Q_S
Nakagawa et al. (2010)	SHRB	0.35-2.35	6.20	3.75	E , G , ν , V_P , V_S , Q
Nakagawa (2011)	SHRB	0.40-2.30	6.22	3.81	E , G , ν , V_P , V_S , Q
Nakagawa et al. (2011)	SHRB	0.30-1.50	7.62	3.75	E , G , ν , V_P , V_S , Q
O'Hara (1985)	RB	3.00-30.0	38.0	2.22	V_E , V_S , δ
Priest et al. (2006)	GHRC	< 0.40	14.0	7.00	Q_E, Q_S
Tittmann (1977)	RB	22.0-23.0	-	-	Q_E, Q_S
Tittmann et al. (1981)	RB	7.00-9.00	12.0	1.50	Q_E
Waite et al. (2011)	SHRB	0.36-1.60	7.62	3.81	V_P, V_S
Wegel et al. (1935)	RB	0.10-100	~30.0	~1.00	Q_E, Q_S
Winkler et al. (1979)	RB	0.50-1.70	100	-	V _E , V _S , V _P , Q _E , Q _S , Q _K , Q _P
Winkler et al. (1982)	RB	0.50-9.00	100	-	V _E , V _S , V _P , Q _E , Q _S , Q _K , Q _P
Wyllie et al. (1962)	RB	>20.0	-	1.90-2.50	V_E , V_S , ν , δ_E , δ_S
Yin et al. (1992)	RB	1.60-1.80	39.0-53.0	5.00	E, Q _E
Zadler et al. (2004)	RUS	15.0-88.0	7.10	2.50	Q_E , Q_S , V_P , V_S

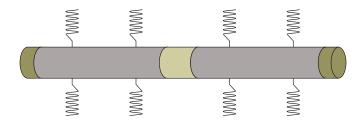

What is the kHz range and how do we measure it?

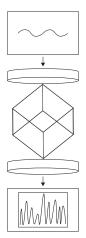

What is the kHz range and how do we measure it?

What is the kHz range and how do we measure it?









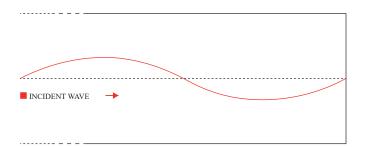
Resonant Ultrasound Spectroscopy (RUS)

Resonance Bar (RB) versus Resonant Ultrasound Spectroscopy (RUS)

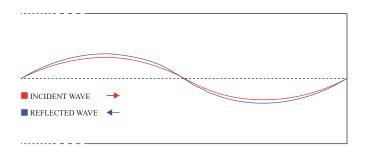
RB and RUS are similar in the sense that they:

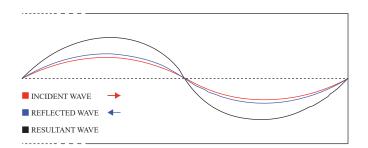
- overlap to some extent in terms of frequency range
- though RB is able to reach lower frequencies while RUS is able to measure higher frequencies (plus the range itself is larger)

Resonance Bar (RB) versus Resonant Ultrasound Spectroscopy (RUS)

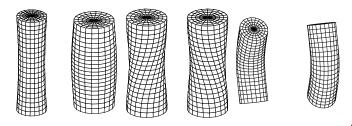

That being said, differences arise as sample size and shape are considered:

- For RB measurements:
 - the most common sample is a bar that is cylindrical in cross-section with a length-to-diamter ratio of 10 or more
 - the length of the bars are anywhere from 10.0-100 cm
- Whereas for RUS:
 - the sample can be any shape that can be modelled, though most common are spheres, cylinders, and parallelpipeds
 - the size varies from a few hundred microns, with masses less than 100 micrograms, to several centimeters and several kilograms (Maynard, 1996)


What is resonance and how is it related to standing waves?


What is resonance and how is it related to standing waves?

What is resonance and how is it related to standing waves?



What are the different modes of vibration?

Mavko et al. (2009) defined the different modes of vibrations:

- **Extensional** waves depend on the displacement in both the radial and the axial domain $(u_r \text{ and } u_z)$
- **Torsional** waves depend on displacement in the circumferential domain (u_{θ})
- Flexural waves depend on displacement in both the axial and the circumferential domain $(u_z \text{ and } u_\theta)$

How are the velocities determined?

The general term from which the velocities are determined

$$v = \frac{2Lf}{n},\tag{1}$$

whereas the extensional and torsional constituent of the resonating state occurs at different frequencies

$$v_{\mathcal{S}} = \sqrt{\frac{\mu}{\rho}} = 2Lf_{\mathcal{S}},\tag{2}$$

$$v_E = \sqrt{\frac{E}{\rho}} = 2Lf_E. \tag{3}$$

How are the velocities determined?

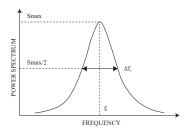
In order to compute the P-wave velocity, the combined effort of the S-wave velocity and the Poisson's ratio is exploited

$$V_P^2 = \frac{2(\nu - 1)V_S^2}{2\nu - 1},\tag{4}$$

$$\nu = \frac{V_E^2 - 2V_S^2}{2V_S^2} = \frac{1}{2} \sqrt{\frac{V_E}{V_S}} - 1,\tag{5}$$

while the combination of Equations 4 and 5 yields

$$V_P^2 = V_S^2 \frac{4V_S^2 - V_E^2}{3V_S^2 - V_E^2}.$$
(6)


bjective Literature Techniques **Theory** Final Remarks References

What about attenuation?

For resonant bar measurements, two methods are widely used to determine the Q factor, namely the **half power** method and the **decay** method.

• The half power method exploits

$$Q = \frac{f_c}{\Delta f_c}. (7)$$

What about attenuation?

 The decay method, on the other hand, is an alternative solution to monitor the decay of the resonation once the system is vibrating in a steady state and the driving force is switched off.

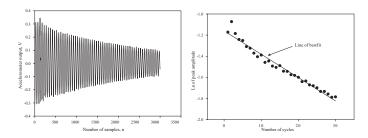


Figure: Modified from Priest et al. (2006)

What about attenuation?

 In a dissipative system, as the resonance response decays, the difference in amplitude between successive peaks is inferred as energy loss per cycle termed by the logarithmic decrement

$$\delta = \ln \frac{A_1}{A_2},\tag{8}$$

whereas the intrinsic attenuation (1/Q) is related to the logarithmic decrement (δ) via

$$\frac{1}{Q} = \frac{\delta}{\pi}.\tag{9}$$

What do we want to do?

We want to conduct measurements in the sonic interval at certain levels of stress, temperature, and saturation; measurements under conditions that are similar to the ones imposed by the existing equipment.

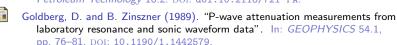
Ideally, building a technique in the mould of Nakagawa would be preferable, but...

- design, build, and calibrate a new apparatus is both expensive and time consuming
- it would also be difficult to perform resonant experiments under the desired conditions

We can therefore not help but ask ourselves...

- is it possible to surpass the 150 Hz threshold set by Szewczyk
 et al. (2016) due to resonance occurrences?
 - perhaps it is possible to do measurements between the resonances?

References I



- Born, W.T. (1941). "The Attenuation Constant of Earth Materials". In: GEOPHYSICS 6.2, pp. 132–148. DOI: 10.1190/1.1443714.
- Bourbié, T. and B. Zinszner (1985). "Hydraulic and acoustic properties as a function of porosity in Fontainebleau Sandstone". In: *Journal of Geophysical Research: Solid Earth* 90.B13, pp. 11524–11532. DOI: 10.1029/JB090iB13p11524.
- Cadoret, T., D. Marion, and B. Zinszner (1995). "Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones". In: *Journal* of *Geophysical Research: Solid Earth* 100.B6, pp. 9789–9803. DOI: 10.1029/95JB00757.
 - Cadoret, T., G. Mavko, and B. Zinszner (1998). "Fluid distribution effect on sonic attenuation in partially saturated limestones". In: GEOPHYSICS 63.1, pp. 154–160. DOI: 10.1190/1.1444308.

References II

- Jones, T. and A. Nur (1983). "Velocity and attenuation in sandstone at elevated temperatures and pressures". In: Geophysical Research Letters 10.2, pp. 140–143. DOI: 10.1029/GL010i002p00140.
- Lucet, N., P.N.J. Rasolofosaon, and B. Zinszner (1991). "Sonic properties of rocks under confining pressure using the resonant bar technique". In: *The Journal of the Acoustical Society of America* 89.3, pp. 980–990. DOI: 10.1121/1.400643.
- Lucet, N. and B. Zinszner (1992). "Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks". In: GEOPHYSICS 57.8, pp. 1018–1026. DOI: 10.1190/1.1443313.
 - (2006). "Frequency dependence of velocity in carbonate rocks". In: SEG Technical Program Expanded Abstracts 2006, pp. 1898—1902. DOI: 10.1190/1.2369896.

References III

Mavko, G., T. Mukerji, and J. Dvorkin (2009). The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. 2nd. Cambridge: Cambridge University Press. ISBN: 0521861365.

Maynard, J. (1996). "Resonant ultrasound spectroscopy". In: *Physics Today* 49.1, pp. 26–31.

McCann, C., J. Sothcott, and A.I. Best (2014). "A new laboratory technique for determining the compressional wave properties of marine sediments at sonic frequencies and in situ pressures". In: Geophysical Prospecting 62.1, pp. 97–116. DOI: 10.1111/1365-2478.12079.

Murphy, W.F. III (1982). "Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass". In: *The Journal of the Acoustical Society of America* 71.6, pp. 1458–1468. DOI: 10.1121/1.387843.



— (1984). "Acoustic measures of partial gas saturation in tight sandstones". In: Journal of Geophysical Research: Solid Earth 89.B13, pp. 11549–11559. DOI: 10.1029/JB089iB13p11549.

Nakagawa, S. (2011). "Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples". In: *Review of Scientific Instruments* 82.4, p. 044901. DOI: doi:http://dx.doi.org/10.1063/1.3579501.

References IV

— (2011). Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation. DOI: 10.2172/1052176.

O'Hara, S.G. (1985). "Influence of pressure, temperature, and pore fluid on the frequency-dependent attenuation of elastic waves in Berea sandstone". In: *Phys. Rev. A* 32 (1), pp. 472–488. DOI: 10.1103/PhysRevA.32.472.

Priest, J.A: A.I. Best, and C.R.I. Clayton (2006). "Attenuation of seismic waves in methane gas hydrate-bearing sand". In: Geophysical Journal International 164.1, pp. 149–159.

Szewczyk, D., A.K.M. Bauer, and R.M. Holt (2016). "A new laboratory apparatus for the measurement of seismic dispersion under deviatoric stress conditions". In: *Geophysical Prospecting* 64.4, pp. 789–798. DOI: 10.1111/1365-2478.12425.

Tittmann, B.R. (1977). "Internal Friction Measurements and their Implications in Seismic Q Structure Models of the Crust". In: *The Earth's Crust*, pp. 197–213. DOI: 10.1029/GM020p0197.

References V

- Wegel, R.L. and H. Walther (1935). "Internal Dissipation in Solids for Small Cyclic Strains". In: *Physics* 6.4, pp. 141–157. DOI: 10.1063/1.1745306.
- Winkler, K.W. and A. Nur (1979). "Pore fluids and seismic attenuation in rocks". In: Geophysical Research Letters 6.1, pp. 1–4. DOI: 10.1029/GL006i001p00001.
- (1982). "Seismic attenuation: Effects of pore fluids and frictional-sliding". In: GEOPHYSICS 47.1, pp. 1–15. DOI: 10.1190/1.1441276.
- Wyllie, M. R. J., G.H.F. Gardner, and A.R. Gregory (1962). "STUDIES OF ELASTIC WAVE ATTENUATION IN POROUS MEDIA". In: GEOPHYSICS 27.5, pp. 569–589. DOI: 10.1190/1.1439063.
- Yin, C.-S., M. L. Batzle, and B. J. Smith (1992). "Effects of partial liquid/gas saturation on extensional wave attenuation in Berea sandstone". In: Geophysical Research Letters 19.13, pp. 1399–1402. DOI: 10.1029/92GL01159.

References VI

Zadler, B.J., J.H.L. Le Rousseau, J.A. Scales, and M.L. Smith (2004). "Resonant Ultrasound Spectroscopy: theory and application". In: *Geophysical Journal International* 156.1, p. 154. DOI: 10.1111/j.1365-246X.2004.02093.x.

Acknowledgement

