Conclusions

Acknowledgments

References

Shear wave singularities in tilted orthorhombic media

Yuriy Ivanov^{*} and Alexey Stovas

Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: yuriy.ivanov@ntnu.no

April 24th, 2017 RoSe Meeting Trondheim, Norway

Theory

Conclusions

Acknowledgments

References

Outline

Introduction

Overviev and motivation

Theory

S-wave singularities Traveltime parameters

Conclusions

Acknowledgments

References

Theory

Conclusions

Acknowledgments

References

Background Objectives

$\rightarrow\,$ Occurrence of singularities in ORT media,

Theory

Conclusions

Acknowledgments

References

Background Objectives

- $\rightarrow\,$ Occurrence of singularities in ORT media,
- $\rightarrow\,$ Traveltime parameters in the vicinity of singularity points.

Theory

Conclusions

Acknowledgments

References

$Background \\ S\text{-wave propagation complexity}^1$

 \rightarrow Non-separable quasi-shear waves (in symmetries lower than hexagonal),

- \rightarrow Non-separable quasi-shear waves (in symmetries lower than hexagonal),
- $\rightarrow\,$ Presence of singularity points,

- \rightarrow Non-separable quasi-shear waves (in symmetries lower than hexagonal),
- $\rightarrow\,$ Presence of singularity points,
- $\rightarrow~$ Multipathing and wavefront caustics,

- \rightarrow Non-separable quasi-shear waves (in symmetries lower than hexagonal),
- $\rightarrow\,$ Presence of singularity points,
- $\rightarrow~$ Multipathing and wavefront caustics,
- $\rightarrow\,$ Rapid polarization variations.

- \rightarrow Non-separable quasi-shear waves (in symmetries lower than hexagonal),
- $\rightarrow~{\rm Presence}~{\rm of}~{\rm singularity}~{\rm points},$
- $\rightarrow~$ Multipathing and wavefront caustics,
- $\rightarrow\,$ Rapid polarization variations.

Theory

Conclusions

Acknowledgments

References

Background S-wave singularities

Crampin (1991):

"In all anisotropic solids, there are directions of propagation, known as shear-wave singularities, where the split shear-waves have the same phase-velocities."

S-waves peculiarities

Figure 1: Synthetic seismogram in the vicinity of a singularity in an olivine sample (from Rümpker and Thomson, 1994).

Y. Ivanov (NTNU)

S-waves singularities in TOR

24 Apr 2017 6 / 35

Theory

Conclusions

Acknowledgments

References

Background and motivation Why study S-wave singularities?

 \rightarrow Modelling¹,

¹Vavryčuk (2001)

Theory

Conclusions

Acknowledgments

References

Background and motivation Why study S-wave singularities?

- \rightarrow Modelling¹,
- $\rightarrow\,$ Microseismic monitoring².

¹Vavryčuk (2001) ²Vavryčuk (2013); Grechka (2015) Y. Ivanov (NTNU)

Theory

Conclusions

Acknowledgments

References

S-wave singularities classification

Theory

Conclusions

Acknowledgments

References

S-wave singularities classification

Three types¹:

1. Touch (kiss) singularity: VTI on-axis singularity,

Theory

Conclusions

Acknowledgments

References

S-wave singularities classification

- 1. Touch (kiss) singularity: VTI on-axis singularity,
- 2. Line singularity: VTI off-axis singularity

Conclusions

Acknowledgments

References

S-wave singularities classification

- 1. Touch (kiss) singularity: VTI on-axis singularity,
- 2. Line singularity: VTI off-axis singularity
- 3. Point singularity (conical point, acoustic axis): orthorhombic and lower symmetry media.

Conclusions

Acknowledgments

References

S-wave singularities classification

- 1. Touch (kiss) singularity: VTI on-axis singularity,
- 2. Line singularity: VTI off-axis singularity
- 3. **Point singularity (conical point, acoustic axis)**: orthorhombic and lower symmetry media.

Conclusions

Acknowledgments

References

S-wave singularities

Figure 2: From left: kiss, line, and point singularities (scale is exaggerated). From Crampin (1991).

Theory

Conclusions

Acknowledgments

References

S-wave singularities Point singularity

Courtesy of Mike Naylor

Theory

Conclusions

Acknowledgments

References

What is a medium's complexity? Wavefronts

Y. Ivanov (NTNU)

S-waves singularities in TOR

24 Apr 2017 11 / 35

Theory

Conclusions

Acknowledgments

References

What is a medium's complexity? Wavefronts

Theory

Conclusions

Acknowledgments

References

What is a medium's complexity? Wavefronts

Y. Ivanov (NTNU)

S-waves singularities in TOR

Conclusions

Acknowledgments

References

Restricted VTI Recording

Theory

Conclusions

Acknowledgments

References

Conical points in orthorhombic media

• Maximum allowed number¹: 16: $4 \times \text{each plane} + 4 \times \text{outside}$,

 1 Musgrave (1985)

Theory

Conclusions

Acknowledgments

References

Conical points in orthorhombic media

- Maximum allowed number¹: 16: $4 \times each plane + 4 \times outside$,
- Minimum²: 0.

¹Musgrave (1985) ²Alshits and Lothe (1979) Y. Ivanov (NTNU)

Theory

Conclusions

Acknowledgments

References

Conical points in orthorhombic media Perturbation of ISO media to ORT

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (1)$$

Theory

Conclusions

Acknowledgments

References

Conical points in orthorhombic media Perturbation of ISO media to ORT

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (1)$$

 $\lambda = \mu = 1$ in $c_{ijkl}^{(\text{ISO})}$,

Theory

Conclusions

Acknowledgments

References

Conical points in orthorhombic media Perturbation of ISO media to ORT

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (1)$$

 $\lambda = \mu = 1$ in $c_{ijkl}^{(\text{ISO})}$,

 $\varepsilon \propto$ the anisotropy strength,

Theory

Conclusions

Acknowledgments

References

Conical points in orthorhombic media Perturbation of ISO media to ORT

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (1)$$

 $\lambda = \mu = 1 \text{ in } c_{ijkl}^{(\text{ISO})},$

 $\varepsilon \propto$ the anisotropy strength,

 $\tilde{c}_{ijkl}^{(\text{ORT})}$ is generated randomly (10⁵ samples).

Acknowledgments

Conical points in orthorhombic media Perturbation of ISO media to ORT

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (1)$$

 $\lambda = \mu = 1$ in $c_{ijkl}^{(\text{ISO})}$,

 $\varepsilon \propto$ the anisotropy strength,

 $\tilde{c}_{ijkl}^{(\text{ORT})}$ is generated randomly (10⁵ samples).

All the singularity directions are found¹.

¹Boulanger and Hayes (1998)

Theory

Conical points in orthorhombic media In-plane singularities: distribution classes

Class	Х	Υ	Ζ	Multiplicity	Total # of in-plane S		
Ι	2	2	2	1	12		
II	1	2	2	3	10		
III	1	1	2	3	8		
\mathbf{IV}	0	2	2	3	8		
V	0	1	2	6	6		
\mathbf{VI}	1	1	1	1	6		
VII	0	0	2	3	4		
VIII	0	1	1	3	4		
IX	0	0	1	3	2		

Conical points distribution

$\varepsilon = 0.01$

Theory

Conclusions

References

Conical points distribution

Theory

Conclusions

Conical points distribution

Theory

Conclusions

Acknowledgments

References

Conical points distribution Dependence on the perturbation magnitude 1

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (2)$$

¹Vavryčuk (2005) Y. Ivanov (NTNU)

Theory

Conclusions

Acknowledgments

References

Conical points distribution Dependence on the perturbation magnitude 1

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (2)$$

 $\varepsilon \in [-1000, 1000],$

Conclusions

Acknowledgments

References

$\begin{array}{c} Conical \ points \ distribution \\ Dependence \ on \ the \ perturbation \ magnitude^1 \end{array}$

$$c_{ijkl}^{(\text{ORT})} = c_{ijkl}^{(\text{ISO})} + \varepsilon \tilde{c}_{ijkl}^{(\text{ORT})}, \qquad (2)$$

 $\varepsilon \in [-1000, 1000],$

	$\Gamma - 0.4117$	0.4118	0.5525	0	0	0 -
(0.4118	0.6576	0.6092	0	0	0
$\tilde{a}^{(ORT)}$	0.5525	0.6092	-0.7989	0	0	0
$c_{iikl} =$	0	0	0	0.8755	0	0
- J	0	0	0	0	0.1565	0
	Lo	0	0	0	0	-0.1606

Only off-planes singularity directions are considered.

¹Vavryčuk (2005)

Y. Ivanov (NTNU)

Theory

Conclusions

Acknowledgments

References

Conical points distribution Dependence on the perturbation magnitude 1

¹Vavryčuk (2005) Y. Ivanov (NTNU)

Theory

Conclusions

Acknowledgments

References

Traveltime parameters.

Y. Ivanov (NTNU)

24 Apr 2017 23 / 35

Conclusions

References

The one-way propagation

Theory

Conclusions

Acknowledgments

References

The one-way propagation Traveltime expansion about its minimum

$$t^{2}(r,\alpha) = t_{0}^{2} + \frac{1}{V_{n}^{2}(\alpha)}r^{2} + \dots,$$
(3)

Theory

Conclusions

Acknowledgments

References

The one-way propagation Traveltime expansion about its minimum

$$t^{2}(r,\alpha) = \frac{t_{0}^{2}}{V_{n}^{2}(\alpha)}r^{2} + \dots,$$
(3)

The traveltime minimum,

Theory

Conclusions

Acknowledgments

References

The one-way propagation Traveltime expansion about its minimum

$$t^{2}(r,\alpha) = t_{0}^{2} + \frac{1}{V_{n}^{2}(\alpha)}r^{2} + \dots,$$
(3)

The traveltime minimum,

The normal moveout (NMO) velocity ellipse.

Theory

Conclusions

Acknowledgments

References

What if the orthorhombic symmetry planes are tilted?

Conclusions

Acknowledgments

References

Conical points in tilted orthorhombic media Euler's angles θ and ψ

Conclusions

Acknowledgments

References

Conical points in tilted orthorhombic media Euler's angles θ and ψ

Conclusions

Acknowledgments

References

Conical points in tilted orthorhombic media Euler's angles θ and ψ

Conclusions

Acknowledgments

References

The traveltime parameters The ORT model

*p*₃, s km^{−1}

Y. Ivanov (NTNU)

S-waves singularities in TOR

24 Apr 2017 30 / 35

Conclusions

Acknowledgments

References

Y. Ivanov (NTNU)

S-waves singularities in TOR

Theory

Conclusions

Acknowledgments

References

The traveltime parameters

Y. Ivanov (NTNU)

S-waves singularities in TOR

Theory

Conclusions

Acknowledgments

References

The traveltime parameters The NMO ellipse

Higher-order traveltime parameters are also considered 1

¹Ivanov and Stovas (2017)

Y. Ivanov (NTNU)

S-waves singularities in TOR

 $24 \ {\rm Apr} \ 2017 \qquad 31 \ / \ 35$

Conclusions

Acknowledgments

References

Conclusions

1. Weak anisotropy \rightarrow plenty of the point singularities,

Conclusions

Acknowledgments

References

Conclusions

- 1. Weak anisotropy \rightarrow plenty of the point singularities,
- 2. Singularity directions form closed lines as a function of ε ,

Conclusions

Acknowledgments

References

Conclusions

- 1. Weak anisotropy \rightarrow plenty of the point singularities,
- 2. Singularity directions form closed lines as a function of ε ,
- 3. The traveltime parameters are strongly affected (even outside the hyperbolic region),

Conclusions

Conclusions

- 1. Weak anisotropy \rightarrow plenty of the point singularities,
- 2. Singularity directions form closed lines as a function of ε ,
- 3. The traveltime parameters are strongly affected (even outside the hyperbolic region),
- 4. Potential use of the singularities for microseismic inversion¹?

Conclusions

Acknowledgments

References

Conclusions

- 1. Weak anisotropy \rightarrow plenty of the point singularities,
- 2. Singularity directions form closed lines as a function of ε ,
- 3. The traveltime parameters are strongly affected (even outside the hyperbolic region),
- 4. Potential use of the singularities for microseismic inversion¹?

¹Vavryčuk (2013, "Inversion for weak triclinic anisotropy from acoustic axes.") Y. Ivanov (NTNU) S-waves singularities in TOR

Theory

Conclusions

Acknowledgments

References

Acknowledgments

Authors are thankful to the ROSE project for the financial support.

Thanks for your attention.

Y. Ivanov (NTNU)

S-waves singularities in TOR

24 Apr 2017 33 / 35

Conclusions

References I

- Alshits, V., and J. Lothe, 1979, Elastic waves in triclinic crystals. II. Topology of polarization fields and some general theorems: Soviet Physics, Crystallography, 24, 393–398. (originally in Russian, 1978, Crystallography, 24, 683–693).
- Boulanger, P., and M. Hayes, 1998, Acoustic axes for elastic waves in crystals: theory and applications: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454, 2323–2346.
- Crampin, S., 1981, A review of wave motion in anisotropic and cracked elastic-media: Wave Motion, **3**, 343–391.
- ——, 1991, Effects of point singularities on shear-wave propagation in sedimentary basins: Geophysical Journal International, **107**, 531–543.
- Grechka, V., 2015, Shear-wave group-velocity surfaces in low-symmetry anisotropic media: Geophysics, **80**, C1–C7.
- Ivanov, Y., and A. Stovas, 2017, Shear wave singularities in tilted orthorhombic media: Geophyscis, 82, 1–11. (Forthcoming).
- Musgrave, M. J. P., 1985, Acoustic Axes in Orthorhombic Media: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 401, 131–143.

Conclusions

References II

- Payton, R. G., 1992, Wave Propagation in a Restricted Transversely Isotropic Elastic Solid Whose Slowness Surface Contains Conical Points: The Quarterly Journal of Mechanics and Applied Mathematics, 45, 183–197.
- Rümpker, G., and C. J. Thomson, 1994, Seismic-waveform effects of conical points in gradually varying anisotropic media: Geophysical Journal International, **118**, 759–780.
- Vavryčuk, V., 2001, Ray tracing in anisotropic media with singularities: Geophysical Journal International, **145**, 265–276.
- —, 2003a, Behavior of rays near singularities in anisotropic media: Physical Review B, **67**, 054105.
- ——, 2003b, Parabolic lines and caustics in homogeneous weakly anisotropic solids: Geophysical Journal International, **152**, 318–334.
- —, 2005, Acoustic axes in triclinic anisotropy: The Journal of the Acoustical Society of America, **118**, 647–653.
- —, 2013, Inversion for weak triclinic anisotropy from acoustic axes: Wave Motion, **50**, 1271–1282.