Depth dependent dilation factor

Kenneth Duffaut Associate Professor

Faculty of Engineering Department of Geoscience and Petroleum RoSe meeting Trondheim, 25th April, 2017

Outline

- Introduction
- The dilation factor Lab measurements and interpretation
- Modelling and discussion
- Conclusions

Depleting reservoir Compaction and Subsidence

Introduction 4D traveltime analysis

 t_0 = two-way vertical time thickness of unit x_0 = coordinate position along a line z = thickness of formation unit v_{p0} = vertical P-wave velocity of unit Δ = changes in physical parameters α and R = ratio between relative velocity and thickness changes

$$t_0(x_0) = \frac{2z(x_0)}{v_{p0}(x_0)}$$

$$\frac{\Delta t_0(x_0)}{t_0(x_0)} \approx \frac{\Delta z(x_0)}{z(x_0)} - \frac{\Delta v_{p0}(x_0)}{v_{p0}(x_0)}$$

$$\frac{\Delta v_{p0}(x_0)}{v_{p0}(x_0)} = \alpha \frac{\Delta z(x_0)}{z(x_0)}$$

(Landrø and Stammeijer 2004)

(Røste et al., 2005)

(Hatchell et al., 2005)

$$\left[\frac{\Delta t_0(x_0)}{t_0(x_0)} \approx \left(1 + R(x_0)\right) \frac{\Delta z(x_0)}{z(x_0)} = \left(1 + R(x_0)\right) \varepsilon_a(x_0)\right]_{layer}$$

 $R = -\alpha$

Assuming uniaxial deformation

Introduction Accumulated traveltime shifts

🖸 NTNU

Outline

- Introduction
- The dilation factor Lab measurements and interpretation
- Modelling and discussion
- Conclusions

Dilation factor vs. axial stress Dry glass bead measurements

Interpretation from lab experiments

- The dilation factor is stress path dependent
 - R-value for hydrostatic stress path > R-value for K0 loading

Dilation factor vs. axial stress Dry glass beads vs. unconsolidated dry sand

Interpretation from lab experiments

- The dilation factor is dependent on the stress path
 - R-value for hydrostatic stress path > R-value for K0 loading path
- The R-value also dependent on grain contact conditions

 but also "lithology"
- Lab. experiments show increased R-values due the coring process (Holt et al., 2008).

🗅 NTNU

Outline

- Introduction
- The dilation factor Lab measurements and interpretation
- Modelling and discussion
- Conclusions

The "Hertz-Mindlin" grain contact model

Hydrostatic loading Infinite or zero grain contact friction

1

Effective bulk modulus

$$K_{dry} = \left(\frac{C_p^2 (1-\varphi)^2 G_{ma}^2 \sigma}{18\pi^2 (1-\nu_{ma})^2}\right)^{\frac{1}{3}}$$

Effective shear modulus (∞ friction)

$$G_{dry} = \frac{3}{5} \left(\frac{5 - 4\nu_{ma}}{2 - \nu_{ma}} \right) K_{dry}$$

Effective shear modulus (zero grain friction)

$$G_{dry} = \frac{3}{5} K_{dry}$$

$$\sigma$$
 = Differential stress
 ϕ = Pore volume or Porosity
 v_{ma} = Grain Poisson's ratio
 G_{ma} = Grain shear modulus
 C_{p} = # grain contact points-

Sphere assembly

S. Torquato, 2000

Stress-strain relation – Contact theory Hydrostatic and K0 loading conditions

Dilation factor vs. axial stress Dry glass bead measurements vs. grain contact theory

Dilation factor vs. axial stress Dry glass beads and sand vs. grain contact theory

Dilation factor vs. axial stress Modelling the effect of rock stiffness ("lithology")

Dilation factor vs. axial stress Modelling wet glass beads – hydrostatic loading

Summary

- Grain contact model (zero contact friction)
 - Hydrostatic and K0 loading path: R decrease with increasing axial stress similar to trends from lab measurements on glass beads
 - R for hydrostatic stress path > R for K0 loading path. R-level ok.
- Grain contact model (infinite contact friction)
 - Hydrostatic stress path: R value lower, but overall trend the same as for zero contact friction
 - K0 loading path: R values larger than that of zero grain friction
 - R for hydrostatic stress path < R for K0 loading path.
- Lowering of the matrix moduli reduces the R-value
 - Higher strains for lower matrix moduli

Introduction Accumulated traveltime shifts

$$\Delta T = 2 \int_{0}^{Z} \left(1 + R(z)\right) \frac{\varepsilon_a}{v(z)} dz$$

The Snorre Field

NTNU

The Nordland Group Estimated stress sensitivity of P-wave velocity

The Nordland Group Estimated stress sensitivity of P-wave velocity

Dilation factor estimated from 4D analysis

(Figure courtesy: Røste and Ke, 2017)

Conclusions

- α or R is dependent upon stress path
- α or R is lithology dependent (stress-strain relation)
 - Lab. experiments show increased R-values due the coring process (Holt et al., 2008).
- α or R is like to vary with depth especially with sand layers
 - The thickness of these layers will have variable impact on the accumulated traveltime differences
- Grain contact theory simulating hydrostatic and K0 loading path explains fairly well the α (or R) trends for unconsolidated sands.

Thank you

