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Objective

Figure: Modified from Szewczyk et al. (2016).

• In the words of Birch et al. (1938): “a respectable frequency
gap remains to be bridged,” as measurements between the
seismic and the ultrasonic range are still quite rare.
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Literature
Author(s) Technique Frequency [kHz] Length [cm] Diameter [cm] Parameter(s)

Batzle et al. (2006) FD 0.005-2.50 - - E , VP , VS QE

Birch et al. (1938) RB 0.14-4.50 244 23.0 Q
Born (1941) RB 0.93-12.8 14.00-124.0 12.0 δ = πQ−1

Bourbié et al. (1985) RB 3.00-5.00 - - VE , Q
Cadoret et al. (1995) RB 1.00 110 8.00 VE , VS , VP

Cadoret et al. (1998) RB 1.00 110 8.00 QS , QE

Gardner et al. (1964) RB 2.00-3.00 5.00-30.0 5.00 δE , δS
Goldberg et al. (1989) RB 5.00-25.0 25.0 2.50 QP

Ide (1935) RB 4.00-12.0 25.0 5.10 E
Jones et al. (1983) RB 1.70-3.40 - - V, QS

Lucet et al. (1991) RB 5.00-20.0 25.0-30.0 2.50 VE , VP , QE , QS

Lucet et al. (1992) RB 3.00-10.0 30.0 2.50 QE

Lucet et al. (2006) RB 2.00-20.0 - - QE , Vsonic/Vultrasonic , VPP/VPFB

McCann et al. (2014) PT 1.00-10.0 60.0 6.90 VP , QP , T
Murphy (1982) RB 0.30-14.0 20.0-100 - VS , VE , QE , QS

Murphy (1984) RB 5.00 20.0-25.0 19.0 VS , VE , QE , QS

Nakagawa et al. (2010) SHRB 0.35-2.35 6.20 3.75 E , G , ν, VP , VS , Q
Nakagawa (2011) SHRB 0.40-2.30 6.22 3.81 E , G , ν, VP , VS , Q

Nakagawa et al. (2011) SHRB 0.30-1.50 7.62 3.75 E , G , ν, VP , VS , Q
O’Hara (1985) RB 3.00-30.0 38.0 2.22 VE , VS , δ

Priest et al. (2006) GHRC <0.40 14.0 7.00 QE , QS

Tittmann (1977) RB 22.0-23.0 - - QE , QS

Tittmann et al. (1981) RB 7.00-9.00 12.0 1.50 QE

Waite et al. (2011) SHRB 0.36-1.60 7.62 3.81 VP , VS

Wegel et al. (1935) RB 0.10-100 ∼30.0 ∼1.00 QE , QS

Winkler et al. (1979) RB 0.50-1.70 100 - VE , VS , VP , QE , QS , QK , QP

Winkler et al. (1982) RB 0.50-9.00 100 - VE , VS , VP , QE , QS , QK , QP

Wyllie et al. (1962) RB >20.0 - 1.90-2.50 VE , VS , ν, δE , δS
Yin et al. (1992) RB 1.60-1.80 39.0-53.0 5.00 E , QE

Zadler et al. (2004) RUS 15.0-88.0 7.10 2.50 QE , QS , VP , VS
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What is the kHz range and how do we measure it?
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What is the kHz range and how do we measure it?
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Resonant Bar Techniques
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Resonant Ultrasound Spectroscopy (RUS)
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Resonance Bar (RB) versus Resonant Ultrasound
Spectroscopy (RUS)

RB and RUS are similar in the sense that they:

• overlap to some extent in terms of frequency range

• though RB is able to reach lower frequencies while RUS is able
to measure higher frequencies (plus the range itself is larger)
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Resonance Bar (RB) versus Resonant Ultrasound
Spectroscopy (RUS)

That being said, differences arise as sample size and shape are
considered:

• For RB measurements:
• the most common sample is a bar that is cylindrical in

cross-section with a length-to-diamter ratio of 10 or more
• the length of the bars are anywhere from 10.0-100 cm

• Whereas for RUS:
• the sample can be any shape that can be modelled, though

most common are spheres, cylinders, and parallelpipeds
• the size varies from a few hundred microns, with masses less

than 100 micrograms, to several centimeters and several
kilograms (Maynard, 1996)
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What is resonance and how is it related to standing waves?

INCIDENT WAVE
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What is resonance and how is it related to standing waves?
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What are the different modes of vibration?

Mavko et al. (2009) defined the different modes of vibrations:

• Extensional waves depend on the displacement in both the
radial and the axial domain (ur and uz)

• Torsional waves depend on displacement in the
circumferential domain (uθ)

• Flexural waves depend on displacement in both the axial and
the circumferential domain (uz and uθ)
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Figure 1. Surface particle displacements of several characteristic modes of the generic soft rock model 

depend both on the shape and the elastic properties of 
our body. 

If we now define a new function T as 

we then have (@warning Citation 'mi97' on page 5 un-

defined) 

8T fo 
8a 

i {p w2ui <5ui - Cijkl 81uk 8i<5ui} dV = 0(3) 

If we choose a basis we can decompose any component 
Ui, 1 :::; i :::; 3, of our displacement field into this ba-

Figure 7: Pairs from left to right; the longitudinal mode, the torsional mode,
and the flexural mode. Modified from Zadler et al. (2004).

Mavko et al. (2009) attributes torsional waves to circumferential dis-
placements independent of θ, while simultaneously acknowledging that the
lowest of mode of each kind of motion is of great practical significance. For
the lowest torsional mode, the displacement is proportional to the radius
due to the motion being a rotation of each cross-section of the cylinder
about its centre. Thus, the phase velocity of the lowest torsional mode is
nondispersive and is given by

Vtorsion = VS =

√
µ

ρ
= 2LfS , (9)

with µ and ρ denoting the shear modulus and density of the rod, respectively
(Mavko et al., 2009). Au contraire, longitudinal waves are axially symmetric
and are associated with axial and radial displacement components. Given
that ka is sufficiently small (ka � 1), the phase velocity of the lowest
longitudinal mode takes the form

Vlong =

√
E

ρ
[1− 1

4
ν2(ka)2] +O[(Ka)4]. (10)

Here, E is the Young’s modulus and ν is the Poisson ratio of the cylin-
drical rod (Mavko et al., 2009). As ka approaches zero, so does the phase
velocity as it approaches the bar velocity or extensional velocity

VE =

√
E

ρ
= 2LfE . (11)

Vice versa, for every large ka (ka � 1), Vlong approaches the Rayleigh
wave velocity. Murphy (1984) embodied P-wave velocities as a function of
their S-wave pendant and the Poisson’s ratio denoted by Vp, Vs, and ν,
respectively

V 2
P =

2(ν − 1)V 2
S

2ν − 1
, (12)

whereas ν is given by

12

Figure: Modified from Zadler et al. (2004)
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How are the velocities determined?

The general term from which the velocities are determined

v =
2Lf

n
, (1)

whereas the extensional and torsional constituent of the resonating
state occurs at different frequencies

vS =

√
µ

ρ
= 2LfS , (2)

vE =

√
E

ρ
= 2LfE . (3)
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How are the velocities determined?

In order to compute the P-wave velocity, the combined effort of
the S-wave velocity and the Poisson’s ratio is exploited

V 2
P =

2(ν − 1)V 2
S

2ν − 1
, (4)

ν =
V 2
E − 2V 2

S

2V 2
S

=
1

2

√
VE

VS
− 1, (5)

while the combination of Equations 4 and 5 yields

V 2
P = V 2

S

4V 2
S − V 2

E

3V 2
S − V 2

E

. (6)
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What about attenuation?

For resonant bar measurements, two methods are widely used to
determine the Q factor, namely the half power method and the
decay method.

• The half power method exploits

Q =
fc

∆fc
. (7)

Smax/2

Smax

FREQUENCY

PO
W

ER
 S

PE
C

TR
U

M

f

Δfc

c

Figure: Modified from Nakagawa (2011).
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What about attenuation?

• The decay method, on the other hand, is an alternative
solution to monitor the decay of the resonation once the
system is vibrating in a steady state and the driving force is
switched off.
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What about attenuation?

• In a dissipative system, as the resonance response decays, the
difference in amplitude between successive peaks is inferred as
energy loss per cycle termed by the logarithmic decrement

δ = ln
A1

A2
, (8)

whereas the intrinsic attenuation (1/Q) is related to the
logarithmic decrement (δ) via

1

Q
=
δ

π
. (9)
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What do we want to do?

We want to conduct measurements in the sonic interval at certain
levels of stress, temperature, and saturation; measurements under
conditions that are similar to the ones imposed by the existing
equipment.
Ideally, building a technique in the mould of Nakagawa would be
preferable, but...

• design, build, and calibrate a new apparatus is both expensive
and time consuming

• it would also be difficult to perform resonant experiments
under the desired conditions

We can therefore not help but ask ourselves...

• is it possible to surpass the 150 Hz threshold set by Szewczyk
et al. (2016) due to resonance occurrences?

• perhaps it is possible to do measurements between the
resonances?
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