ROSE meeting

Shibo Xu & Alexey Stovas, NTNU 25.04.2016, Trondheim

Anisotropy parameters from diving waves

Objectives:

1 Better understanding of the feature of diving wave in a factorized VTI medium

2 Imaging moveout approximation of the diving wave

3 Estimate the anisotropy parameters through semblance analysis

- ✤ 1 Diving wave in a factorized VTI medium
 - 2 The image moveout approximation
 - 3 Semblance analysis & anisotropy estimation
 - 4 Numerical examples & different parameterization
 - 5 Conclusions

Diving wave

Diving wave in anisotropic medium

Constant-gradient isotropic model

$$v(z) = v_0 + Gz \quad \varepsilon = \delta = 0$$

• NTNU, Trondheim

Constant-gradient anisotropic model

$$v(z) = v_0 + Gz \quad \delta = 0.2, \eta = 0.1$$

1 Diving wave in a factorized VTI medium

✤ 2 The image moveout approximation

3 Semblance analysis & anisotropy estimation

4 Numerical examples & different parameterization

5 Conclusions

Imaging moveout

Isotropic traveltime expression

$$t_p = \frac{1}{G} \log(\frac{v(z_p)}{v_0} \frac{1 + \sqrt{1 - p^2 v_0^2}}{1 + \sqrt{1 - p^2 v^2(z_p)}})$$

Anisotropic traveltime from source to the turning point T_0

Apply for isotropic constant gradient model $t_p = T_0$

"Turning point"

$$x_p(\varepsilon,\eta), z_p(\varepsilon,\eta)$$

 $\Delta x_p(z_p) = x_0 - x_p$

• NTNU, Trondheim

The image moveout approximation_(A) Taylor series

$$V_0 = 2 \text{ km/s}, G = 1.5 \text{ s}^{-1}, \varepsilon = 0.22, \eta = 0.1$$

• NTNU, Trondheim

The image moveout approximation_(B) Pade approximation

$$V_0 = 2 \text{ km/s}, G = 1.5 \text{ s}^{-1}, \varepsilon = 0.22, \eta = 0.1$$

NTNU, Trondheim

The image moveout approximation_(C) rational approximation

$$V_0 = 2 \text{ km/s}, G = 1.5 \text{ s}^{-1}, \varepsilon = 0.22, \eta = 0.1$$

• NTNU, Trondheim

- 1 Diving wave in a factorized VTI medium
- 2 The image moveout approximation
- ✤ 3 Semblance analysis & anisotropy estimation
 - 4 Numerical examples & different parameterization
 - 5 Conclusions

Anisotropic modeling $V_0 = 2 \text{ km/s}, \varepsilon = 0.22, \eta = 0.1$

• NTNU, Trondheim

Anisotropic RTM $\varepsilon = 0.22, \eta = 0.1$

Isotropic RTM $\mathcal{E} = 0, \eta = 0$

Rational approximation

Synthetic seismic data

$$V_0 = 2 \text{ km/s}, G = 1.5 \text{ s}^{-1}, \varepsilon = 0.22, \eta = 0.1$$

•14

 $G = 1.5 \,\mathrm{s}^{-1}$

Semblance analysis

$$SB = \frac{\sum_{j}^{nz} A_{i(j),j}^{2}}{(\sum_{j}^{nz} A_{i(j),j})^{2}},$$

•15

 $\Delta \varepsilon \approx 0.002, \Delta \eta \approx -0.004$

 $\Delta \varepsilon \approx 0.0075, \Delta \eta \approx 0.0385$

0.25 8

- 1 Diving wave in a factorized VTI medium
- 2 The image moveout approximation
- 3 Semblance analysis & anisotropy estimation
- ✤ 4 Numerical examples & different parameterization
 - 5 Conclusions

• NTNU, Trondheim

 δ, ε $\eta = \frac{\varepsilon - \delta}{1 + 2\delta}$

Different parameterization

$G_1 = 1.5s^{-1}$			
$V_0, oldsymbol{arepsilon}, oldsymbol{\eta}$	$\Delta \varepsilon \approx 0.002$	$\Delta\eta \approx -0.004$	
$V_{_0}, \delta, \eta$	$\Delta \varepsilon \approx 0.0015$	$\Delta \eta \approx -0.0055$	
$V_{_0}, \boldsymbol{\delta}, \boldsymbol{arepsilon}$	$\Delta \varepsilon \approx 0.002$	$\Delta \eta \approx -0.0035$	

	$G_2 = 2s^{-1}$	
$V_{_0}, arepsilon, \eta$	$\Delta \varepsilon \approx 0.0075$	$\Delta \eta \approx 0.0385$
$V_{_0}, \delta, \eta$	$\Delta \varepsilon \approx 0.0080$	$\Delta \eta \approx 0.0385$
$V_{_0}, \boldsymbol{\delta}, \boldsymbol{arepsilon}$	$\Delta \varepsilon \approx 0.0075$	$\Delta \eta \approx 0.045$

- 1 Diving wave in a factorized VTI medium
- 2 The image moveout approximation
- 3 Semblance analysis & anisotropy estimation
- 4 Numerical examples & different parameterization
- ✤ 5 Conclusions

Conclusions

1 We develop the method to estimate the anisotropy parameters from the residual moveout of the diving wave in a factorized velocity model.

2 We analyze different approximations for the imaging moveout, and find that the second order rational approximation is the most accurate one.

3 We estimate the anisotropy parameters from the semblance analysis on residual moveout in the RTM image gathers.

4 The anisotropy estimation using semblance analysis for all parameterizations is reasonably accurate even for large values of velocity gradients.

Thanks for attention!