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Let’s start
• What are low frequencies?

à ~ 0.1 Hz - 5 Hz

• Why do we need low frequencies?

• How can we handle the problem? 
Two options

1. Combined Elastic Waveform and Gravity Inversion

2. Mechanism for low frequencies in seismic acquisition

• Outlook



Why do we need low frequencies?
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1. Higher resolution

• Higher frequencies
reduce width of main lobe

• Lower frequencies
reduce side lobes

• Improved peak-to-sidelobe
ratio from  5.6 (4 Hz) 
to 12.3 (1 Hz)  
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2. Better penetration
• Less attenuation for lower frequencies

Conventional acquisition Broadband acquisition

Source:	Kroode et	al.,	2013	
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3. Full Waveform Inversion
• Highly non-linear problem

• Non-linearity reduced by:

• low frequencies
(data space)

• good initial model
(model space)

• sequential inversion

• additional information

Source:	Alkhalifah,	 2012	

Objective function



How can we handle the problem?
1. Combined Elastic Waveform and Gravity Inversion
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True 2D Marmousi-II model
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Initial model

No	empirical
relations

1D	gradient	of
true	model

Water-column
above constant
halfspace
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3.5 Hz data: combined Inversion

main
structures
resolved
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0.5 Hz data: combined Inversion

high impact
of low frequency
content



How can we handle the problem?
1. Combined Elastic Waveform and Gravity Inversion

2. Mechanism for low frequencies in seismic acquisition
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Signal of rising Bubble?
• Single 600 𝑖𝑛# air gun at different depths, with hydrophone 20 m below
• Ormsby low pass filter (3 Hz)

• Signal of air gun: 1. Main impulse, 2. Bubble Oscillation, 3. Rising bubble
• Period inreases with source depth

3	m	 5 m	 7.5	m	 10	m	

Source:	Landrø	and	Amundsen,	 2014	
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Signal of rising Sphere
• Velocity	of rising	sphere

𝑚%&
%' = 𝐹* − 𝐹,	 (force	balance)

𝑣 =	 /0 tanh 𝛾𝑡

𝛽 =
𝐶,𝐴
2𝑉𝑔	, 	𝛾 =

𝜌
𝑚

𝐶,𝑔𝐴𝑉
2

𝐶,	=	drag	coefficient ,	𝐴	=	sph.	cross-section,	𝑉 =	sph.	volume

• Reynolds	number

𝑅𝑒 = &∗,
B 																		𝑅𝑒 ≜ 10# − 10F

𝐷	=	diameter,	𝜇	=	kinematic viscosity

• Pressure distribution around
sphere for	high Reynolds	numbers
(by	Achenbach,	1972)

Source:	Landrø	and	Amundsen,	 2014	
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Tank experiment
• Release of buoy from different depth in small water tank
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Signal of rising Buoy

• Signal at hydrophone 1
• negative pressure below à rising buoy

• duration of signal increases with depth

• problem: effects due to tank size

Tank	experiment

𝑧J = 35𝑐𝑚𝑧J = 75𝑐𝑚
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Signal of rising Buoy
Tank	experiment

buoy passing	hydrophone 2

• Signal at hydrophone 2
• negative pressure when buoy passes hydrophone

• amplitude related with rising velocity
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Outlook
• rising Bubbleßà rising Sphere ßà rising Buoy ?

• promising, but has to be verified

• Simple, but could explain mechanism for low frequencies in air gun signal
• low frequencies related to rising time (depends on velocity and depth of buoy)

• not account for: bubble oscillation, bubble-size depth dependency, …

• Upscaling pressure to bigger radius (Gilmore, 1952; Davies and Taylor, 1950)

• estimated with: 𝑝 − 𝑝P ≈ 𝜌	 R&S
T

U
= VWXRT

YU
				, 𝑤𝑖𝑡ℎ							𝑣J =

\
#

𝑔𝑅

• If mechanisms are the same, an optimal depth could be found with
• biggest possible radius + required distance to reach terminal velocity
• depends on favored frequency f = &S

^S
(𝑧J= source depth)

Radius (m) Calculated pressure (mbar-m) Measured pressure (mbar-m)

0.075 0.25 0.5																

0.15 1 2																				

1.0	 44 88	?
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Standing wave
• Difference between amplitudes of hydrophone 1 (deep) and 2 (shallow)
• Frequency 𝑓 = &

`
• 𝑣 = 𝑔𝑑 ≈ 3.5c

d
(for shallow water)

• 𝜆 = 2.4	𝑚	, 1.2	𝑚 (regarding to size of tank)
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Mechanical to Acoustic Energy
• How much energy of buoy is transfered to acoustic energy

• Not reliable, because only to point measurements (bigger array required)
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Unfiltered Signal of buoy



24

FWI workflow
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FWI workflow with GRAVITY



Workflow

• Pure FWI
• Seismic frequency content

down to 3 Hz

• sequential inversion of
different frequency bands 
(2.5, 5, 10, 20 Hz)

• invert for all parameters 
(𝑣g,𝑣d,𝜌) simultaneously

• Combined Inversion
• Seismic frequency content

down to 3 Hz

• sequential inversion of
different frequency bands 
(2.5, 5, 10, 20 Hz)

• 1 step: invert for density only

• 2 step: invert for all paramters
(𝑣g,𝑣d,𝜌) simultaneously



27

Results: pure FWI

well
resolved

Problem
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Results: pure FWI

main
structures
resolved

Problem
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Gravity modeling

gravity of prism 𝑔^ = 𝐺𝜌		 ∫ ∫ ∫ ^
Uj 𝑑𝑥𝑑𝑦𝑑𝑧

^T
^m

nT
nm

oT
om

• Integration in existing
FWI FD-Grid is easy

• Boundary conditions:
extension in x- and y-
direction

• Cost effective
computation compared
to FWI
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Objective Function
• Objective function for FWI

𝐸qrs = 	
1
2𝛿𝑢

v𝛿𝑢

• Minimizing the objective function by iteratively updating seismic velocities
and densities with Quasi-Newton l-BFGS method (Nocedal & Wright, 2006; 
Brossier, 2011)

𝑉gwx/ = 𝑉gw − 𝜇w𝐻wz/
𝛿𝐸qrs

𝛿𝑉g

w

𝑉dwx/ = 𝑉dw − 𝜇w𝐻wz/
𝛿𝐸qrs

𝛿𝑉d

w

𝜌wx/ = 𝜌w − 𝜇w𝐻wz/
𝛿𝐸qrs

𝛿𝜌

w
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Joint Objective Function

• Modified objective function for Joint Inversion

𝐸{|s}v = 	
1
2 𝛿𝑢v𝛿𝑢 + λ/	𝛿𝑔^v𝛿𝑔^ = 𝐸qrs + 𝜆/	𝐸�R��

• Minimizing the objective function by iteratively updating seismic velocities and densities
with Quasi-Newton l-BFGS method (Nocedal & Wright, 2006; Brossier, 2011)

𝑉gwx/ = 𝑉gw − 𝜇w𝐻wz/
𝛿𝐸qrs

𝛿𝑉g

w

𝑉dwx/ = 𝑉dw − 𝜇w𝐻wz/
𝛿𝐸qrs

𝛿𝑉d

w

𝜌wx/ = 𝜌w − 𝜇w𝐻wz/
𝛿𝐸qrs

𝛿𝜌 + 𝜆/𝜆\	
𝛿𝐸�R��

𝛿𝜌

w
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Parameter 𝜆
Calculation of weighting parameter 𝜆

• 𝜆/ (objective function)

𝜆/ = 𝛾
𝐸qrs	(1)
𝐸�R��	(1)

• 𝜆\ (gradients)

𝜆\ = 𝛾	
max	(𝜕𝐸

qrs

𝜕𝜌 )

max	(𝜕𝐸
�R��

𝜕𝜌 )
	𝜆/z/
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Gradient
• Gradient for the density (FWI) (Köhn et al., 2012)

𝛿𝐸qrs

𝛿𝜌 = � �𝑑𝑡
𝛿\𝑢o
𝛿𝑡\ 𝜓o +

𝛿\𝑢^
𝛿𝑡\ 𝜓^ 	

d��U�d

Construction of the gradient by zero-lag correlation of forward 
wavefield 𝑢 and backpropagated data residual wavefield𝜓

• Gradient for the density (Gravity)

𝛿𝐸�R��

𝛿𝜌 = 𝐺� 𝛿𝑔^
�

𝑲	𝑑𝑆

𝑲 = geometrical kernel
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Wavenumber analysis
Gradient	of first iteration step during combined inversion…

…for gravity data…

…and seismic data.
(low-pass	filtered,	2	Hz)

averagewavenumbers of gradients

Gravity	contributes information to low frequencies
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Further tasks

• apply combined inversion to salt/basalt model
• use empirical relations, constrain velocities through gravity data

• impedance inversion instead of velocities

• acoustic or elastic modelling/inversion, 2D/3D modelling/inversion

• inversion of gravity gradient data �X�
�^ à more sensitive to local structures

• reduce trade-off between attenuation and density in visco-elastic media by
combined inversion

• impact of enhancement of low frequency seismic data
when is combined inversion necessary, if we have lower frequencies in seismic data


