Laboratory measured stress dependence in shales at seismic and ultrasonic frequencies

by Dawid Szewczyk, Andreas Bauer, Rune M. Holt

> ROSE meeting 25th - 28th April 2016 Trondheim, Norway

NTNU – Trondheim Norwegian University of Science and Technology

Biaxial cell for seismic-dispersion measurements

Endcap with ultrasonic transducers (Vp, Vs) and pore-fluid line

LVDT

Rock sample (1" diameter) with 8 strain gages (4 axial, 4 radial) glued to it (rubber sleeve was removed)

Endcap with ultrasonic transducers (Vp, Vs) and pore-fluid line

Low-frequency unit consisting of piezoelectric actuator and piezoelectric force sensor, $\epsilon \sim 10^{-7} - 10^{-6}$

Internal load cell

Biaxial cell for seismic-dispersion measurements

Endcap with ultrasonic transducers (Vp, Vs) and pore-fluid line

LVDT

Rock sample (1" diameter) with 8 strain gages (4 axial, 4 radial) glued to it (rubber sleeve was removed)

Endcap with ultrasonic transducers (Vp, Vs) and pore-fluid line

Low-frequency unit consisting of piezoelectric actuator and piezoelectric force sensor, $\epsilon \sim 10^{-7} - 10^{-6}$

Internal load cell

Stress dependence – Sample preparation

<u>Mancos shale</u>: outcrop, gas shale, preserved in oil, density =2.57 g/cm³, 1-11% porosity, 20-25% clay, 40-50% quartz, =1% -1,5% TOC, tested in as-received conditions

<u>Pierre shale</u>: outcrop material preserved in oil, density 2.40 g/cm³, 10-25% porosity, 40-80% clay, 5-25% quartz, saturation levels tuned

Expose samples to different relative humidity [RH] 11.3% [LiCl]

32.9% [MgCl]

54,7% [Mg(NO₃)₂]

75.4% [NaCl]

> RH control → saturated solutions of different type of salts
> RH → saturated conversion: mineral density + XRD composition → ρ_T (0 porosity);
ρ_T + ρ_M(measured) → φ; φ + V_S → V_φ; V_φ + ΔM → S_W

Stress dependence – Data processing

<u>Seismic frequencies</u> \rightarrow Rock engineering parameters (E, ν) <u>Ultrasonic frequencies</u> \rightarrow P- and S-wave velocities

Conversion

Stress dependence – Data processing

# of sample	Shale	Orientation with respect to bedding	Saturant	RH theoretical (RH measured in the day of experiment)	Saturation	Change of volume during stabilization (%)
S 01, 02, 03	Mancos "B"	0°, 45°, 90°	As received	- (~86%)	~ 0.71	0
S 04, 05, 06	Pierre	0°, 45°, 90°	LiCI	11.3% (18.9%)	~ 0.12	~ -3 ÷ -4
S 07	Pierre	0°	MgCl ₂	32.9% (33.9%)	~ 0.27	-3,10
S 08, 09, 10	Pierre	0°, 45°, 90°	$Mg(NO_3)_2$	54.4% (55.1%)	~ 0.50	~ -2,5 ÷ -3,2
S 11	Pierre	0°	NaCl	75.4% (76%)	~ 0.72	-3,16

Vertical properties + Thomsen parameters \rightarrow Elastic coefficients (C_{ii})

$$\begin{split} C_{11} &= \frac{E_V(v_{VH}-1)}{(v_{VH}+1)(2v_{VH}-1)} - \frac{2E_V(v_{VH}-1)(2v_{VH}^2 - v_{VH}+1)}{(v_{VH}+1)^2(2v_{VH}-1)^2} \varepsilon + \frac{4v_{VH}^2 E_V}{(v_{VH}+1)^2(2v_{VH}-1)} \gamma + \frac{2v_{VH}^2 E_V(v_{VH}-1)}{(v_{VH}+1)^2(2v_{VH}-1)^2} \varepsilon \\ C_{33} &= \frac{E_V(v_{VH}-1)}{(v_{VH}+1)(2v_{VH}-1)} - \frac{8v_{VH}^2 E_V(v_{VH}-1)}{(v_{VH}+1)^2(2v_{VH}-1)^2} \varepsilon + \frac{4v_{VH}^2 E_V}{(v_{VH}+1)^2(2v_{VH}-1)} \gamma + \frac{2v_{VH}^2 E_V(v_{VH}-1)}{(v_{VH}+1)^2(2v_{VH}-1)^2} \delta \\ C_{44} &= \frac{E_V}{2(v_{VH}+1)} + \frac{2v_{VH} E_V(v_{VH}-1)}{(v_{VH}+1)^2(1-2v_{VH})} \varepsilon + \frac{v_{VH} E_V}{(v_{VH}+1)^2} \gamma - \frac{(v_{VH}-1)(2v_{VH}+1)E_V}{2(v_{VH}+1)^2(1-2v_{VH})} \delta \\ C_{66} &= \frac{E_V}{2(v_{VH}+1)} + \frac{2v_{VH} E_V(v_{VH}-1)}{(v_{VH}+1)^2(1-2v_{VH})} \varepsilon + \frac{E_V(2v_{VH}+1)}{(v_{VH}+1)^2} \gamma - \frac{(v_{VH}-1)(2v_{VH}+1)E_V}{2(v_{VH}+1)^2(1-2v_{VH})} \delta \\ C_{13} &= \frac{-E_V v_{VH}}{(v_{VH}+1)(2v_{VH}-1)} - \frac{4v_{VH} E_V(v_{VH}-1)}{(v_{VH}+1)^2(2v_{VH}-1)^2} \varepsilon + \frac{2v_{VH} E_V}{(2v_{VH}-1)(v_{VH}+1)^2} \gamma + \frac{v_{VH} E_V(v_{VH}-1)}{(v_{VH}+1)^2(1-2v_{VH})} \delta \\ \end{split}$$

Stress dependence – Quality check

Stress dependence – E_v - Mancos shale

- > Dispersion \rightarrow ~ 50% in E_v (~ 10% at seismic frequencies)
- Stress sensitivity ~ 0.15%/MPa
- Absolute E_v changes similar at seismic and ultrasonic frequencies (relative changes are higher at seismic frequencies due to dispersion)
- > Poisson's ratio non-dispersive at seismic frequencies and rather stress independent

Stress dependence – E_V - Pierre shale

- ➢ Dispersion → ~ 24% in E_v at low stresses and ~ 17% at high stresses (increases with increasing S_w)
- Stress sensitivity ~ 1.6%/MPa and decreases with increasing saturation (0.7%/MPa for S_w=0.72)
- Absolute E_v changes similar at seismic and ultrasonic frequencies (relative changes are smaller at ultrasonic frequencies due to dispersion)
- ➢ Poisson's ratio → non-dispersive at seismic frequencies (from S_w=0.5 some dispersion may be observed), clear stress dependency

Stress dependence – V_{PV}-Mancos shale

- (~ twofold higher at seismic regime)
- ▶ Dispersion \rightarrow ~ 23% in V_{PV} between 1 Hz and 500 kHz
- Dispersion decreases with increasing stress

Stress dependence – V_{PV}- Pierre shale

- Stress sensitivity \rightarrow different for seismic and ultrasonic and saturation dependent
- Dispersion \rightarrow ~ 10% in V_{PV} between 1 Hz and 500 kHz (S_W=0.12) and saturation dependent
- Dispersion decreases with increasing stress (beside $S_w=0.72$)
- Effects of saturation increase \rightarrow stress sensitivity decreases, dispersion increases

Summary

- Absolute E_v changes as a response to hydrostatic loading are similar at seismic and ultrasonic frequencies for both shale types however due to dispersion stress sensitivity is frequency dependent.
- Increase in water saturation level causes increase in E_v dispersion and softening of the shale at seismic frequencies (data not shown in presentation, more in Andreas Bauer talk).
- Stress sensitivity of V_{PV} is frequency dependent (up to twofold decrease from seismic to ultrasonic frequencies) and decreases with the increase of saturation.
- ➢ Increase in applied stress decreases dispersion of V_{PV}.
- ➢ Increase in water content increases dispersion of V_{PV}.

Summary

Acknowledgements

The authors would like to acknowledge support from:

- ➤ The BIGCCS program at NTNU and SINTEF.
- The Research Council of Norway.
- The KPN-project "Shale Rock Physics: Improved seismic monitoring for increased recovery" at SINTEF Petroleum Research.

