Time lapse seismic analysis of the Tohoku-Oki earthquake

by
Martin Landrø ${ }^{1}$, Shuichi Kodaira², Toshiya Fujiwara²,
Tetsuo No^{2},
Wiktor Weibull ${ }^{3}$ Børge Arntsen ${ }^{1}$

The 2011 Tohoku Earthquake

- Interplate earthquake due to subduction of Pacific plate at $8 \mathrm{~cm} /$ year or $8 \mathrm{~m} /$ century
- Largest size ($\mathrm{M}=9.0$) in Japan’s history

100 km 2D line crossing the Japan Trench axis

Differences in acuqisition... not ideal for 4D..

$$
\text { 1999: Zs = } 10 \mathrm{~m} ; \mathrm{Zh}=15 \mathrm{~m}
$$

$$
\text { 2011: Zs = } 10 \text { m; Zh = } 21 \text { m }
$$

Estimated 4D uplift at seabed - modeled uplift from a point source at 21 km

Comparison with bathymetry data

Seabed position before and after earthquake - close to the trench axis

Estimated displacement vectors at the seabed

Seismic detail: Vertical subsidence at top basement

Estimating the dilation factor

Estimated 4D timeshifts at top basement

Time shift at seabed: $11 \mathrm{~ms} ; \mathrm{T}=2.1 \mathrm{~s} \Rightarrow \mathrm{dT} / \mathrm{T}=0.017$

Geomechanical modeling cylinder of radius \mathbf{R}

$$
\mathrm{dz}=5.6 \mathrm{mz}=2.1 \mathrm{~km}=>\mathrm{dz} / \mathrm{z}=0.0027
$$

$$
\frac{d T}{T}=-\frac{d v}{v}+\frac{d z}{z}
$$

$$
R=-\frac{d v / v}{d z / z}
$$

$$
\frac{d T}{T}=(1+R) \frac{d z}{z}
$$

Negative R-factor West of the trench axis

Less timeshifts at top basement compared to seabed + horizontal stretching in this area

Estimating dilation factor for a vertically compacted and horizontally stretched rock

Time shift for the 500 m thick section: $\mathrm{dT} / \mathrm{T}=0.0088$

$$
\mathrm{dz}=0.3 \mathrm{mz}=0.5 \mathrm{~km}=>\mathrm{dz} / \mathrm{z}=-0.0006
$$

$$
\left.\frac{d T}{T}=(1+R) \frac{d z}{z} \right\rvert\, \quad \mathbf{R}^{\sim} \sim \mathbf{- 1 5 . 7}
$$

The role of the sedmentary layer between the two plates.

(b) Velocity model of Line 11.

Tsuru et al., 2002

Horizontal and vertical displacements at seabed verus RMS velocity changes

Other 4D features

Steepening of dipping reflector

Horizontal movement and new fault

PSDM images using frequencies $10-15 \mathrm{~Hz}$

Horizontal stretching stronger than the vertical compaction:

$$
\frac{d T}{T}=-\frac{d v}{v}+\frac{d z}{z}
$$

$$
R=-\frac{d v / v}{d z / z}
$$

$$
\frac{d T}{T}=(1+R) \frac{d z}{z}
$$

