Zero- and infinite-frequency limits of P-wave traveltime parameters in tilted orthorhombic media

Yuriy Ivanov^{*} and Alexey Stovas

Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: vuriv.ivanov@ntnu.no

April 25th, 2016 ROSE meeting

NTNU – Trondheim Norwegian University of Science and Technology

Theory 000000 00

Conclusions 00 Acknowledgmen o References 000

Outline

Introduction Motivation

Theory

Zero-frequency limit Infinite-frequency limit Traveltime parameters

Comparison of the frequency limits

Algebraic expressions Numerical examples Relative geometrical spreading

Conclusions

Acknowledgments

References

Introduction	
0000	

Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgment o References

Background

• Propagation of seismic waves through a layered (and anisotropic) medium is frequency dependent,

Introduction	
0000	

eory 0000 Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgment o References 000

Background

- Propagation of seismic waves through a layered (and anisotropic) medium is frequency dependent,
- P-wave propagation velocity in isotropic layered medium variation between zero- and infinite-frequency limits can reach 15% (Stovas and Ursin, 2007),

Introduction	
0000	

eory 0000 Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgment o References

Background

- Propagation of seismic waves through a layered (and anisotropic) medium is frequency dependent,
- P-wave propagation velocity in isotropic layered medium variation between zero- and infinite-frequency limits can reach 15% (Stovas and Ursin, 2007),
- Although, we never face zero- or infinite-frequency propagation in reality, it is important to know the values at these limits,

eory 2000 Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgment o References 000

Background

- Propagation of seismic waves through a layered (and anisotropic) medium is frequency dependent,
- P-wave propagation velocity in isotropic layered medium variation between zero- and infinite-frequency limits can reach 15% (Stovas and Ursin, 2007),
- Although, we never face zero- or infinite-frequency propagation in reality, it is important to know the values at these limits,
- In light of increasing application of orthorhombic (ORT) and tilted orthorhombic (TOR) models in industry, it is practically important to consider the two frequency limits in these models,

eory 2000 2 Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgment o References 000

Background

- Propagation of seismic waves through a layered (and anisotropic) medium is frequency dependent,
- P-wave propagation velocity in isotropic layered medium variation between zero- and infinite-frequency limits can reach 15% (Stovas and Ursin, 2007),
- Although, we never face zero- or infinite-frequency propagation in reality, it is important to know the values at these limits,
- In light of increasing application of orthorhombic (ORT) and tilted orthorhombic (TOR) models in industry, it is practically important to consider the two frequency limits in these models,
- We analyze the traveltime (processing) parameters (and geometrical spreading) of the reflected P-wave in two frequency limits as a function of the symmetry planes tilt in orthorhombic medium.

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments	References
0000	000000 00 000	00000 0000 000000000	00	0	000
		C	oola		

Goals

• Derive zero- and infinite-frequency limits of the traveltime parameters for reflected waves in layered TOR media,

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments	Reference
0000	000000 00 000	00000 0000 000000000	00	0	000
		~			

Goals

- Derive zero- and infinite-frequency limits of the traveltime parameters for reflected waves in layered TOR media,
- Compare the two limits using numerical model,

Introduction	
0000	

Limits comparise 00000 00000000000 Conclusions 00 Acknowledgmen 0 References 000

Goals

- Derive zero- and infinite-frequency limits of the traveltime parameters for reflected waves in layered TOR media,
- Compare the two limits using numerical model,
- Compare the two limits using real data (well log),

Introduction	
0000	

eory 0000 Limits comparison 00000 00000000000 Conclusions 00 Acknowledgmen o References 000

Goals

- Derive zero- and infinite-frequency limits of the traveltime parameters for reflected waves in layered TOR media,
- Compare the two limits using numerical model,
- Compare the two limits using real data (well log),
- Analyze the relative geometrical spreading in the frequency limits using numerical model and well log data.

Figure 1: Schematic propagation of a pure reflected wave-mode through a TOR layer.

Y. Ivanov (NTNU)

Frequency limits comparison

ntroduction	
000	

eory 0000 Limits comparison 00000 0000000000 Conclusions 00 Acknowledgmen o References 000

The model

Figure 2: An enlarged version of an area inside the red rectangle in Figure 1. Symbol \uparrow schematically indicates the orthorhombic symmetry planes tilt.

Introduction	
0000	

Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgmer o References

The model

Figure 2: An enlarged version of an area inside the red rectangle in Figure 1. Symbol \uparrow schematically indicates the orthorhombic symmetry planes tilt.

Effective

medium

Figure 2: An enlarged version of an area inside the red rectangle in Figure 1. Symbol \uparrow schematically indicates the orthorhombic symmetry planes tilt.

Y. Ivanov (NTNU)

 $z = z_l + h$

1

Figure 2: An enlarged version of an area inside the red rectangle in Figure 1. Symbol \uparrow schematically indicates the orthorhombic symmetry planes tilt.

Intro	du	cti	on	
0000				

Limits comparison 00000 00000000000 Conclusions

Acknowledgment o References 000

Zero-frequency limit, $\lambda \gg h$

Y. Ivanov (NTNU)

Frequency limits comparison

 $25 \text{ Apr } 2016 \qquad 7 \ / \ 43$

Theory 000000 00 00000 Limits comparison 00000 0000 000000000 Conclusions 00 Acknowledgment o References 000

Elastic orthorhombic stiffness matrix

$$\mathbf{c}^{\text{ORT}} = \begin{pmatrix} c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\ & c_{22} & c_{23} & 0 & 0 & 0 \\ & & c_{33} & 0 & 0 & 0 \\ & & & c_{44} & 0 & 0 \\ & & & & c_{55} & 0 \\ & & & & & c_{66} \end{pmatrix}.$$

(1)

Theory 000000 00 000 Limits comparison 00000 0000 000000000 Conclusions 00 Acknowledgments o References

Tilted elastic orthorhombic stiffness matrix

$$\mathbf{c}^{\mathrm{TOR}} = \mathbf{R}_{\theta} \mathbf{c}^{\mathrm{ORT}} \mathbf{R}_{\theta}^{\mathrm{T}}, \qquad (2)$$

where \mathbf{R}_{θ} is the Bond transformation matrix, needed to rotate the stiffness matrix in Voigt notation about the x_2 -axis at an angle θ .

Theory 0000000 000 000 Limits comparison 00000 00000000000 Conclusions 00 Acknowledgments o References 000

Euler's angle θ

Theory 000000 00 000 Limits comparison 00000 00000000000 Conclusions 00 Acknowledgments o References 000

Euler's angle θ

Theory 000000 00 000 Limits comparison 00000 0000 000000000 Conclusions 00 Acknowledgment o References

Schoenberg and Muir upscaling

Theory of Schoenberg and Muir (1989) is an extension of the Backus (1962) upscaling to an arbitrary anisotropic media. Using this theory we obtain the effective anisotropic medium for a reflected wave:

$$\tilde{\mathbf{c}} = \left\langle \mathbf{c}^{\mathrm{TOR}}(\theta), \mathbf{c}^{\mathrm{TOR}}(-\theta) \right\rangle, \tag{3}$$

where $\langle ... \rangle$ denotes the upscaling operation. Structure of $\tilde{\mathbf{c}}$ is similar to that of a vertical ORT medium and defined by 10 independent parameters.

Theory 000000 00000 Limits comparison 00000 00000000000 Conclusions

Acknowledgment o References 000

Infinite-frequency limit, $\lambda \ll h$

Y. Ivanov (NTNU)

Frequency limits comparison

25 Apr 2016 13 / 43

Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgment o References 000

Time (slowness surface) averaging

In order to obtain the traveltime parameters in the infinite-frequency limit (ray approximation), slowness surfaces should be averaged:

$$p_3^{(R)}(\theta) = \frac{p_3^{(D)}(\theta) + p_3^{(U)}(\theta)}{2} \tag{4}$$

where $\mathbf{p} = (p_1, p_2, p_3)^{\mathrm{T}}$ is the slowness vector, $p_3 = p_3(p_1, p_2)$, and R, D, and U in p_3 superscript indicates "reflected", "down"- and "up"-traveling wave.

Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgments 0 References

Time (slowness surface) averaging

In order to obtain the traveltime parameters in the infinite-frequency limit (ray approximation), slowness surfaces should be averaged:

$$p_3^{(R)}(\theta) = \frac{p_3^{(D)}(\theta) + p_3^{(U)}(\theta)}{2} = \frac{p_3(\theta) + p_3(-\theta)}{2}, \tag{4}$$

where $\mathbf{p} = (p_1, p_2, p_3)^{\mathrm{T}}$ is the slowness vector, $p_3 = p_3(p_1, p_2)$, and R, D, and U in p_3 superscript indicates "reflected", "down"- and "up"-traveling wave.

Y. Ivanov (NTNU)

Frequency limits comparison

Intro	odu	cti	on
0000)		

Limits comparison 00000 00000000000 Conclusions 00 Acknowledgment o References 000

Traveltime parameters

Y. Ivanov (NTNU)

Frequency limits comparison

 $25 \text{ Apr } 2016 \qquad 15 \ / \ 43$

Theory

Limits comparison 00000 0000 000000000 Conclusions 00 Acknowledgments 0 References

Series for the traveltime squared

Traveltime parameters are related to the coefficients in front of the source-receiver offset horizontal projections in the series for traveltime squared:

$$t^{2}(x_{1}, x_{2}) = \frac{z^{2}}{V_{0}^{2}} + \frac{x_{1}^{2}}{V_{n2}^{2}} + \frac{x_{2}^{2}}{V_{n1}^{2}} - \frac{2\eta_{2}x_{1}^{4}}{V_{n2}^{4}t_{0}^{2}} - \frac{2\eta_{1}x_{2}^{4}}{V_{n1}^{4}t_{0}^{2}} - \frac{2\eta_{xy}x_{1}^{2}x_{2}^{2}}{V_{n2}^{2}V_{n1}^{2}t_{0}^{2}} + \dots,$$
(5)

Theory 000000 00 0000 Limits comparison 00000 0000 000000000 Conclusions 00 Acknowledgment o References

Series for the traveltime squared

Traveltime parameters are related to the coefficients in front of the source-receiver offset horizontal projections in the series for traveltime squared:

$$t^{2}(x_{1}, x_{2}) = \frac{z^{2}}{V_{0}^{2}} + \frac{x_{1}^{2}}{V_{n2}^{2}} + \frac{x_{2}^{2}}{V_{n1}^{2}} - \frac{2\eta_{2}x_{1}^{4}}{V_{n2}^{4}t_{0}^{2}} - \frac{2\eta_{1}x_{2}^{4}}{V_{n1}^{4}t_{0}^{2}} - \frac{2\eta_{xy}x_{1}^{2}x_{2}^{2}}{V_{n2}^{2}V_{n1}^{2}t_{0}^{2}} + \dots,$$
(5)

where V_0 is the velocity along the vertical, z - thickness of the layer, V_{n2} , η_2 and V_{n1} , η_1 are (P-wave) normal move-out velocities and anellipticity parameters in $[x_1, x_3]$ and $[x_2, x_3]$ planes, respectively (Tsvankin, 1997), η_{xy} is the cross-term anellipticity (Stovas, 2015).

Introduction	
0000	

Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgment o References

Traveltime parameters

Traveltime parameters are obtained from the offset-traveltime parametric equations

$$\begin{cases} x_1(p_1, p_2) = -z \frac{\partial p_3}{\partial p_1}, \\ x_2(p_1, p_2) = -z \frac{\partial p_3}{\partial p_2}, \\ t(p_1, p_2) = x_1 p_1 + x_2 p_2 + z p_3. \end{cases}$$
(6)

Y. Ivanov (NTNU)

Frequency limits comparison

 $25 \ \mathrm{Apr} \ 2016 \qquad 17 \ / \ 43$

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments
0000	000000 00 000	00000 0000 000000000	00	0

Frequency limits comparison

ory I 000

Limits comparison •0000 •000 •0000 Conclusions 00 Acknowledgments o References

Weak anisotropy expressions, first order

In weak anisotropy approximation, the expressions are identical up to the first order in anisotropy parameters:

$$\begin{split} V_{P0}^{LF} &= V_{P0}^{HF} = V_{P0} \left(1 + \epsilon_2 \sin^4 \theta + \delta_2 \sin^2 \theta \cos^2 \theta \right), \\ V_{n1}^{LF} &= V_{n1}^{HF} = V_{P0} \left[1 + \epsilon_2 (1 + \cos^2 \theta) \sin^2 \theta + \delta_1 \cos^2 \theta - \delta_2 \sin^2 \theta \cos^2 \theta + \delta_3 \sin^2 \theta \right], \\ V_{n2}^{LF} &= V_{n2}^{HF} = V_{P0} \left[1 + \epsilon_2 (7 \cos^2 \theta - 1) \sin^2 \theta + \delta_2 (1 - 7 \sin^2 \theta \cos^2 \theta) \right], \\ \eta_1^{LF} &= \eta_1^{HF} = \epsilon_1 - \epsilon_2 (1 + \cos^2 \theta) \sin^2 \theta - \delta_1 \cos^2 \theta + \delta_2 \sin^2 \theta \cos^2 \theta - \delta_3 \sin^2 \theta, \quad (7) \\ \eta_2^{LF} &= \eta_2^{HF} = (\epsilon_2 - \delta_2) \cos 4\theta, \\ \eta_{xy}^{LF} &= \eta_{xy}^{HF} = (\epsilon_2 - \delta_1 + \delta_3) \cos 2\theta + (\epsilon_2 - \delta_2) \cos 4\theta, \end{split}$$

where superscripts LF and HF correspond to zero- and infinite-frequency limits, respectively. Tsvankin (1997) notation is used.

Y. Ivanov (NTNU)

Frequency limits comparison

heory 00000 0 00 Limits comparison 0000 0000 000000000 Conclusions 00 Acknowledgments 0 References

Weak anisotropy expressions, second order

The relation between vertical P-wave velocity $(\sqrt{c_{33}})$ in frequency limits up to the second order in anisotropy parameters:

$$\frac{V_{P0}^{HF}}{V_{P0}^{LF}} = 1 + \frac{\sin^2 2\theta}{2g(1-g)} \left(\epsilon_2^2 \sin^4 \theta + \delta_2^2 \frac{\cos^2 2\theta}{4} + \epsilon_2 \delta_2 \sin^2 \theta \cos 2\theta\right) + \dots, \tag{8}$$

where $g \equiv V_{S0}^2 / V_{P0}^2$.

ntroduction	
0000	

0000

Conclusions 00 Acknowledgmen o References

Contribution from the individual terms

L'heory 000000 00 000 Limits comparison 00000 0000 000000000 Conclusions 00 Acknowledgmen o References

Weak anisotropy expressions, second order

S1- $(\sqrt{c_{55}})$ and S2- $(\sqrt{c_{44}})$ waves:

$$\frac{V_{S10}^{HF}}{V_{S10}^{LF}} = 1 - \frac{\sin^2 2\theta}{2g(1-g)} \left(\epsilon_2^2 \sin^4 \theta + \delta_2^2 \frac{\cos^2 2\theta}{4} + \epsilon_2 \delta_2 \sin^2 \theta \cos 2\theta \right) + \dots,$$

$$\frac{V_{S20}^{HF}}{V_{S20}^{LF}} = 1.$$
(9)

Theory 000000 00 000

Conclusions 00 Acknowledgments o References 000

Correspondence between the vertical velocities

$$\begin{split} V_{P0}^{HF} &\geq V_{P0}^{LF}, \\ V_{S10}^{HF} &\leq V_{S10}^{LF}, \\ V_{S20}^{HF} &= V_{S20}^{LF}. \end{split}$$

Y. Ivanov (NTNU)

(10)

Theory 000000 00 000

Conclusion 00 Acknowledgments o References 000

Single TOR layer

Layer parameters:

$$\begin{array}{ll} V_{P0} = 4 \ {\rm km/s}, & \epsilon_2 = 0.25 & \delta_2 = 0.15, & \gamma_2 = 0.1, & \delta_3 = 0.15, \\ V_{S0} = 2 \ {\rm km/s}, & \epsilon_1 = 0.15 & \delta_1 = 0.05, & \gamma_1 = 0.15. \end{array}$$

Y. Ivanov (NTNU)

Frequency limits comparison

 $25 \ \mathrm{Apr} \ 2016 \qquad 24 \ / \ 43$
Cheory 000000 00 000

Conclusions 00 Acknowledgmen o References 000

Single TOR layer

Theory 000000 00

Conclusion 00 Acknowledgmer o References 000

Single TOR layer

Cheory 000000 00

Conclusion: 00 Acknowledgmer o References 000

Single TOR layer

Fheory 000000 00 000

Conclusion: 00 Acknowledgme o References 000

Fheory 000000 00 000

Conclusions 00 Acknowledgme o References

Theory 000000 00

Conclusion 00 Acknowledgmer o References 000

`heory 000000 000

Conclusion: 00 Acknowledgme o References 000

Theory 000000 00

Conclusions 00 Acknowledgme o References 000

on	Theory	
	000000	
	00	
	000	

Conclusions 00 Acknowledgme: o References 000

Heterogeneous TOR medium: real well log data

Courtesy of Statoil ASA

We use the theory of Schoenberg and Helbig (1997) to include penny-shaped gas-filled cracks, $\delta_N = 0.2$, $\delta_T = 0.5$ (Bakulin et al., 2000), in VTI stiffness matrix along the $[x_2, x_3]$ plane in order to make the medium orthorhombic.

Theory 000000 00 000

Conclusions 00 Acknowledgmen o References

Theory 000000 00 000 Limits comparison 0000 0000 Conclusions 00 Acknowledgments o References 000

Theory 000000 00 000

Conclusions 00 Acknowledgmer o References 000

Theory 000000 00 000

Conclusions 00 Acknowledgme: 0 References 000

Theory 000000 00 000

Conclusions 00 Acknowledgmer o References

Theory 000000 00 000

Conclusions 00 Acknowledgmen o References

Fheory 000000 00 000 Limits comparison 0000 •00000000 Conclusions 00 Acknowledgments 0 References 000

Relative geometrical spreading

Y. Ivanov (NTNU)

Frequency limits comparison

25 Apr 2016 28 / 43

Theory 000000 00 000 Limits comparison 0000 0000 00000000 Conclusions 00 Acknowledgment o References

Relative geometrical spreading \mathcal{L}

$$A \propto \frac{1}{\mathcal{L}(x_1, x_2)} \tag{11}$$

where A is the wave amplitude, x_1 and x_2 are the source-receiver offset projections.

Introduction	
0000	

heory Doooo D Doo Limits comparison 0000 0000 00000000 Conclusions 00 Acknowledgments o References 000

Relative geometrical spreading \mathcal{L}

$$A \propto \frac{1}{\mathcal{L}(x_1, x_2)} \propto \det \mathbf{M} = -\begin{pmatrix} \frac{\partial^2 T(x_1, x_2)}{\partial x_1^2} & \frac{\partial^2 T(x_1, x_2)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 T(x_1, x_2)}{\partial x_2 \partial x_1} & \frac{\partial^2 T(x_1, x_2)}{\partial x_2^2} \end{pmatrix},$$
(11)

where A is the wave amplitude, x_1 and x_2 are the source-receiver offset projections.

Introduction	
0000	

Fheory 000000 00 000 Conclusions 00 Acknowledgments o References

Relative geometrical spreading \mathcal{L}

$$A \propto \frac{1}{\mathcal{L}(x_1, x_2)} \propto \det \mathbf{M} = -\begin{pmatrix} \frac{\partial^2 T(x_1, x_2)}{\partial x_1^2} & \frac{\partial^2 T(x_1, x_2)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 T(x_1, x_2)}{\partial x_2 \partial x_1} & \frac{\partial^2 T(x_1, x_2)}{\partial x_2^2} \end{pmatrix},$$
(11)

where A is the wave amplitude, x_1 and x_2 are the source-receiver offset projections.

Convenient to display the normalized quantity:

$$rac{\mathcal{L}^{-1}}{\mathcal{L}_{\mathrm{ISO}}^{-1}},$$

where \mathcal{L}_{ISO} is calculated in isotropic medium with the velocity equal to the vertical velocity in the initial orthorhombic medium.

Intro	du	lcti	on
0000			

Theory 000000 00 000

Conclusion 00 $\substack{ {\rm Acknowledgments} \\ {\rm o} }$

References 000

Single TOR layer

Layer parameters:

$$\begin{array}{ll} V_{P0} = 4 \ {\rm km/s}, & \epsilon_2 = 0.25 & \delta_2 = 0.15, & \gamma_2 = 0.1, & \delta_3 = 0.15, \\ V_{S0} = 2 \ {\rm km/s}, & \epsilon_1 = 0.15 & \delta_1 = 0.05, & \gamma_1 = 0.15. \end{array}$$

troduction	Theory	Limits comparison	Conclusions	Acknowledgments	Reference
000	000000	00000 0000 00000000	00	0	000

Tilt $\theta=0$

Introduction	Theory	Limits comparison	Conclusions	Acknowledgm
0000	000000	00000	00	0
	000	000000000		

Tilt $\theta = 30^{\circ}$

ntroduction	Theo
000	0000
	00

Limits comparison 0000 0000000000 Conclusions 00 Acknowledgmer o References 000

Tilt $\theta = 60^{\circ}$

Theory 0000000 00 000 Conclusions 00 Acknowledgments o References

Heterogeneous TOR medium: real well log data

Courtesy of Statoil ASA

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments	Refer
0000	000000	00000	00	0	000
	00	0000			
	000	0000000000			

Tilt $\theta = 0$

Y. Ivanov (NTNU)

Frequency limits comparison

25 Apr 2016 35 / 43

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments	References
0000	000000	00000 0000 0000000000	00	0	000

Tilt $\theta = 30^{\circ}$

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments	Refer
0000	000000	00000	00	0	000

Tilt $\theta = 60^{\circ}$

Y. Ivanov (NTNU)

Frequency limits comparison

25 Apr 2016 37 / 43

troduction	Theory	Limits comparison	Conclusions	Acknowledgments	References
000	000000 00 000	00000 0000 0000000000	•0	0	000

Conclusions

• Traveltime parameters of the reflected P-wave in tilted orthorhombic medium in zero- and infinite-frequency limits are analyzed,

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments
0000	000000 00 000	00000 0000 000000000	•0	0

Conclusions

- Traveltime parameters of the reflected P-wave in tilted orthorhombic medium in zero- and infinite-frequency limits are analyzed,
- Weak-anisotropy approximation for the P-wave traveltime parameters are derived and it is shown that they are equal in the frequency limits,

Introduction	
0000	

y Lin 00 000 000 Conclusions •0 Acknowledgmen o References

Conclusions

- Traveltime parameters of the reflected P-wave in tilted orthorhombic medium in zero- and infinite-frequency limits are analyzed,
- Weak-anisotropy approximation for the P-wave traveltime parameters are derived and it is shown that they are equal in the frequency limits,
- Algebraically and using a well log data we demonstrate that the vertical P-wave velocity is higher in the infinite-frequency limit than in the zero-frequency,

Introduction	
0000	

ry Lin 00 000 000 Conclusions •0 Acknowledgmer o References

Conclusions

- Traveltime parameters of the reflected P-wave in tilted orthorhombic medium in zero- and infinite-frequency limits are analyzed,
- Weak-anisotropy approximation for the P-wave traveltime parameters are derived and it is shown that they are equal in the frequency limits,
- Algebraically and using a well log data we demonstrate that the vertical P-wave velocity is higher in the infinite-frequency limit than in the zero-frequency,
- The vertical S1-wave velocity is lower in the infinite-frequency limit than in the zero-frequency, the S2-wave velocity is equal in both frequency limits,

Introduction	
0000	

ory L 000 0 0

Limits comparison 00000 0000 000000000 Conclusions •0 Acknowledgment o References

Conclusions

- Traveltime parameters of the reflected P-wave in tilted orthorhombic medium in zero- and infinite-frequency limits are analyzed,
- Weak-anisotropy approximation for the P-wave traveltime parameters are derived and it is shown that they are equal in the frequency limits,
- Algebraically and using a well log data we demonstrate that the vertical P-wave velocity is higher in the infinite-frequency limit than in the zero-frequency,
- The vertical S1-wave velocity is lower in the infinite-frequency limit than in the zero-frequency, the S2-wave velocity is equal in both frequency limits,
- Correspondence of other parameters (incl. geometrical spreading) in the frequency limits is not simple, however, the difference in effective parameters between two limits can be significant, and it should be analyzed prior to averaging of log data.

Introduction	
0000	

Theory 000000 00 000 Limits comparison 00000 0000 000000000 $\underset{O \bullet}{\operatorname{Conclusions}}$

Acknowledgmen o References 000

Discussion and future work

• Equivalence of the weak-anisotropy expressions in two frequency limits suggests that we can use the isotropic model for the dispersion analysis if anisotropy is indeed weak (!),

Introd	uction
0000	

Theory 000000 00 000 Limits comparison 00000 0000 000000000 $\underset{O \bullet}{\operatorname{Conclusions}}$

Acknowledgment o References 000

Discussion and future work

- Equivalence of the weak-anisotropy expressions in two frequency limits suggests that we can use the isotropic model for the dispersion analysis if anisotropy is indeed weak (!),
- The approach can be extended to more realistic TOR model with the symmetry planes rotated about an arbitrary vector.

Theory 000000 00 Limits comparison 00000 00000000000 Conclusions 00 Acknowledgments

References 000

Acknowledgments

Authors are thankful to the ROSE project for the financial support. I thank Ivan Karpov for fruitful discussions.

Thanks for your attention.

Introduction	Theory	Limits comparison	Conclusions	Acknowledgments
0000	000000 00 000	00000 0000 000000000	00	0

References

- Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal layering: Journal of Geophysical Research, **67**, 4427–4440.
- Bakulin, A., V. Grechka, and I. Tsvankin, 2000, Estimation of fracture parameters from reflection seismic data; Part I, HTI model due to a single fracture set: Geophysics, 65, 1788–1802.
- Schoenberg, M., and K. Helbig, 1997, Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth: Geophysics, 62, 1954–1974.
- Schoenberg, M., and F. Muir, 1989, A calculus for finely layered anisotropic media: Geophysics, 54, 581–589.
- Stovas, A., 2015, Azimuthally dependent kinematic properties of orthorhombic media: Geophysics, **80**, C107–C122.
- Stovas, A., and B. Ursin, 2007, Equivalent time-average and effective medium for periodic layers: Geophysical Prospecting, 55, 871–882.
- Tsvankin, I., 1997, Anisotropic parameters and P-wave velocity for orthorhombic media: Geophysics, **62**, 1292–1309.

Y. Ivanov (NTNU)

References
Introduction 0000 Theory 000000 00 000 Limits comparison 20000 2000 2000000000 Conclusions 00 Acknowledgmen o References

Schoenberg and Muir method

$$\begin{split} \bar{\mathbf{C}}_{\mathrm{NN}} &= \left\langle \mathbf{C}_{\mathrm{NN}}^{-1} \right\rangle^{-1}, \\ \bar{\mathbf{C}}_{\mathrm{TN}} &= \left\langle \mathbf{C}_{\mathrm{TN}} \mathbf{C}_{\mathrm{NN}}^{-1} \right\rangle \bar{\mathbf{C}}_{\mathrm{NN}}, \\ \bar{\mathbf{C}}_{\mathrm{TT}} &= \left\langle \mathbf{C}_{\mathrm{TT}} \right\rangle - \left\langle \mathbf{C}_{\mathrm{TN}} \mathbf{C}_{\mathrm{NN}}^{-1} \mathbf{C}_{\mathrm{NT}} \right\rangle + \left\langle \mathbf{C}_{\mathrm{TN}} \mathbf{C}_{\mathrm{NN}}^{-1} \right\rangle \bar{\mathbf{C}}_{\mathrm{NN}} \left\langle \mathbf{C}_{\mathrm{NN}}^{-1} \mathbf{C}_{\mathrm{NT}} \right\rangle, \end{split}$$

with

$$\mathbf{C}_{\mathrm{NN}}^{i} = \begin{pmatrix} C_{33}^{i} & C_{34}^{i} & C_{35}^{i} \\ C_{34}^{i} & C_{44}^{i} & C_{45}^{i} \\ C_{35}^{i} & C_{45}^{i} & C_{55}^{i} \end{pmatrix}, \quad \mathbf{C}_{\mathrm{TN}}^{i} = \begin{pmatrix} C_{13}^{i} & C_{14}^{i} & C_{15}^{i} \\ C_{23}^{i} & C_{24}^{i} & C_{25}^{i} \\ C_{36}^{i} & C_{46}^{i} & C_{56}^{i} \end{pmatrix}, \quad \mathbf{C}_{\mathrm{TT}}^{i} = \begin{pmatrix} C_{11}^{i} & C_{12}^{i} & C_{16}^{i} \\ C_{12}^{i} & C_{22}^{i} & C_{26}^{i} \\ C_{16}^{i} & C_{26}^{i} & C_{66}^{i} \end{pmatrix}.$$

Y. Ivanov (NTNU)

Intr	odı	ıcti	on
000	0		

Fheory 000000 00 000 Limits comparison 00000 0000 000000000 Conclusions 00 Acknowledgments o References

Vertically fractured VTI

$$\begin{split} \mathbf{C}^{\mathrm{VFVTI}} = & \\ \begin{pmatrix} C_{11b}(1-\delta_N) & C_{12b}(1-\delta_N) & C_{13b}(1-\delta_N) & 0 & 0 & 0 \\ & C_{11b} - \delta_N \frac{C_{12b}^2}{C_{11b}} & C_{13b} \left(1-\delta_N \frac{C_{12b}}{C_{11b}}\right) & 0 & 0 & 0 \\ & & C_{33b} - \delta_N \frac{C_{13b}^2}{C_{11b}} & 0 & 0 & 0 \\ & & & C_{44b} & 0 & 0 \\ & & & & C_{66b}(1-\delta_H) \end{pmatrix}, \end{split}$$

where

$$0 \le \delta_N \equiv \frac{Z_N C_{11b}}{1 + Z_N C_{11b}} \le 1, \qquad 0 \le \delta_V \qquad \equiv \frac{Z_V C_{44b}}{1 + Z_V C_{44b}} \le 1, \qquad 0 \le \delta_H \equiv \frac{Z_H C_{66b}}{1 + Z_H C_{66b}} \le 1.$$

Y. Ivanov (NTNU)

Frequency limits comparison