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Background

• Propagation of seismic waves through a layered (and anisotropic) medium is
frequency dependent,

• P-wave propagation velocity in isotropic layered medium variation between
zero- and infinite-frequency limits can reach 15% (Stovas and Ursin, 2007),

• Although, we never face zero- or infinite-frequency propagation in reality, it is
important to know the values at these limits,

• In light of increasing application of orthorhombic (ORT) and tilted
orthorhombic (TOR) models in industry, it is practically important to
consider the two frequency limits in these models,

• We analyze the traveltime (processing) parameters (and geometrical
spreading) of the reflected P-wave in two frequency limits as a function of the
symmetry planes tilt in orthorhombic medium.
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Goals

• Derive zero- and infinite-frequency limits of the traveltime parameters for
reflected waves in layered TOR media,

• Compare the two limits using numerical model,

• Compare the two limits using real data (well log),

• Analyze the relative geometrical spreading in the frequency limits using
numerical model and well log data.
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The model

z = zr

z = 0

z = zl + h
z = zl

Figure 1: Schematic propagation of a pure reflected wave-mode through a TOR layer.
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The model

Initial
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Figure 2: An enlarged version of an area inside the red rectangle in Figure 1. Symbol ↥
schematically indicates the orthorhombic symmetry planes tilt.
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Zero-frequency limit, λ≫ h
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Elastic orthorhombic stiffness matrix

cORT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c11 c12 c13 0 0 0
c22 c23 0 0 0

c33 0 0 0
SYM c44 0 0

c55 0
c66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1)
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Tilted elastic orthorhombic stiffness matrix

cTOR =Rθc
ORTRT

θ , (2)

where Rθ is the Bond transformation matrix, needed to rotate the stiffness matrix
in Voigt notation about the x2-axis at an angle θ.
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Euler’s angle θ

x1

x2

x3
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Schoenberg and Muir upscaling

Theory of Schoenberg and Muir (1989) is an extension of the Backus (1962)
upscaling to an arbitrary anisotropic media. Using this theory we obtain the
effective anisotropic medium for a reflected wave:

c̃ = ⟨cTOR(θ),cTOR(−θ)⟩ , (3)

where ⟨...⟩ denotes the upscaling operation. Structure of c̃ is similar to that of a
vertical ORT medium and defined by 10 independent parameters.
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Infinite-frequency limit, λ≪ h
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Time (slowness surface) averaging

In order to obtain the traveltime parameters in the infinite-frequency limit (ray
approximation), slowness surfaces should be averaged:

p
(R)
3 (θ) =

p
(D)
3 (θ) + p(U)3 (θ)

2

= p3(θ) + p3(−θ)
2

,

(4)

where p = (p1, p2, p3)T is the slowness vector, p3 = p3(p1, p2), and R, D, and U in
p3 superscript indicates “reflected”, “down”- and “up”-traveling wave.
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Traveltime parameters
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Series for the traveltime squared

Traveltime parameters are related to the coefficients in front of the source-receiver
offset horizontal projections in the series for traveltime squared:

t2(x1, x2) =
z2

V 2
0

+ x21
V 2
n2

+ x22
V 2
n1

− 2η2x
4
1

V 4
n2t

2
0

− 2η1x
4
2

V 4
n1t

2
0

−
2ηxyx

2
1x

2
2

V 2
n2V

2
n1t

2
0

+ ..., (5)

where V0 is the velocity along the vertical, z - thickness of the layer, Vn2, η2 and
Vn1, η1 are (P-wave) normal move-out velocities and anellipticity parameters in
[x1, x3] and [x2, x3] planes, respectively (Tsvankin, 1997), ηxy is the cross-term
anellipticity (Stovas, 2015).
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Traveltime parameters

Traveltime parameters are obtained from the offset-traveltime parametric equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(p1, p2) = −z
∂p3
∂p1

,

x2(p1, p2) = −z
∂p3
∂p2

,

t(p1, p2) = x1p1 + x2p2 + zp3.

(6)
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Frequency limits comparison
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Weak anisotropy expressions, first order

In weak anisotropy approximation, the expressions are identical up to the first
order in anisotropy parameters:

V LF
P0 = V HF

P0 = VP0 (1 + ε2 sin4 θ + δ2 sin2 θ cos2 θ) ,
V LF
n1 = V HF

n1 = VP0 [1 + ε2(1 + cos2 θ) sin2 θ + δ1 cos2 θ − δ2 sin2 θ cos2 θ + δ3 sin2 θ] ,
V LF
n2 = V HF

n2 = VP0 [1 + ε2(7 cos2 θ − 1) sin2 θ + δ2(1 − 7 sin2 θ cos2 θ)] ,
ηLF1 = ηHF1 = ε1 − ε2(1 + cos2 θ) sin2 θ − δ1 cos2 θ + δ2 sin2 θ cos2 θ − δ3 sin2 θ, (7)

ηLF2 = ηHF2 = (ε2 − δ2) cos 4θ,

ηLFxy = ηHFxy = (ε2 − δ1 + δ3) cos 2θ + (ε2 − δ2) cos 4θ,

where superscripts LF and HF correspond to zero- and infinite-frequency limits,
respectively. Tsvankin (1997) notation is used.
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Weak anisotropy expressions, second order

The relation between vertical P-wave velocity (
√
c33) in frequency limits up to the

second order in anisotropy parameters:

V HF
P0

V LF
P0

= 1 + sin2 2θ

2g(1 − g)
(ε22 sin4 θ + δ22

cos2 2θ

4
+ ε2δ2 sin2 θ cos 2θ) + ..., (8)

where g ≡ V 2
S0/V 2

P0.
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Contribution from the individual terms
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Weak anisotropy expressions, second order

S1- (
√
c55) and S2- (

√
c44) waves:

V HF
S10

V LF
S10

= 1 − sin2 2θ

2g(1 − g)
(ε22 sin4 θ + δ22

cos2 2θ

4
+ ε2δ2 sin2 θ cos 2θ) + ...,

V HF
S20

V LF
S20

= 1.

(9)
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Correspondence between the vertical velocities

V HF
P0 ≥ V LF

P0 ,

V HF
S10 ≤ V LF

S10 ,

V HF
S20 = V LF

S20 .

(10)
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Single TOR layer

Layer parameters:

VP0 =4 km/s, ε2 = 0.25 δ2 = 0.15, γ2 = 0.1, δ3 = 0.15,

VS0 =2 km/s, ε1 = 0.15 δ1 = 0.05, γ1 = 0.15.

Y. Ivanov (NTNU) Frequency limits comparison 25 Apr 2016 24 / 43



Introduction Theory Limits comparison Conclusions Acknowledgments References

Single TOR layer
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Single TOR layer
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Single TOR layer
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Single TOR layer
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Single TOR layer
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Single TOR layer
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Single TOR layer
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Single TOR layer
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Heterogeneous TOR medium: real well log data
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We use the theory of Schoenberg and Helbig (1997) to include penny-shaped
gas-filled cracks, δN = 0.2, δT = 0.5 (Bakulin et al., 2000), in VTI stiffness matrix
along the [x2, x3] plane in order to make the medium orthorhombic.
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Well log data - uniform tilt
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Well log data - uniform tilt
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Well log data - uniform tilt
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Well log data - uniform tilt

0 20 40 60 80
0.00

0.05

0.10

0.15

Θ, deg

η

η in [x2,x3]-plane

ω → 0

ω → ∞

Y. Ivanov (NTNU) Frequency limits comparison 25 Apr 2016 27 / 43



Introduction Theory Limits comparison Conclusions Acknowledgments References

Well log data - uniform tilt

0 20 40 60 80
-0.2

-0.1

0.0

0.1

0.2

Θ, deg

η

η in [x1,x3]-plane

ω → 0

ω → ∞

Y. Ivanov (NTNU) Frequency limits comparison 25 Apr 2016 27 / 43



Introduction Theory Limits comparison Conclusions Acknowledgments References

Well log data - uniform tilt
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Relative geometrical spreading
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Relative geometrical spreading L

A∝ 1

L(x1, x2)

∝ detM = −
⎛
⎜
⎝

∂2T (x1,x2)
∂x21

∂2T (x1,x2)
∂x1∂x2

∂2T (x1,x2)
∂x2∂x1

∂2T (x1,x2)
∂x22

⎞
⎟
⎠
,

(11)

where A is the wave amplitude, x1 and x2 are the source-receiver offset
projections.

Convenient to display the normalized quantity:

L−1

L−1ISO
,

where LISO is calculated in isotropic medium with the velocity equal to the vertical
velocity in the initial orthorhombic medium.
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Single TOR layer

Layer parameters:

VP0 =4 km/s, ε2 = 0.25 δ2 = 0.15, γ2 = 0.1, δ3 = 0.15,

VS0 =2 km/s, ε1 = 0.15 δ1 = 0.05, γ1 = 0.15.
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Heterogeneous TOR medium: real well log data
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Conclusions

• Traveltime parameters of the reflected P-wave in tilted orthorhombic medium
in zero- and infinite-frequency limits are analyzed,

• Weak-anisotropy approximation for the P-wave traveltime parameters are
derived and it is shown that they are equal in the frequency limits,

• Algebraically and using a well log data we demonstrate that the vertical
P-wave velocity is higher in the infinite-frequency limit than in the
zero-frequency,

• The vertical S1-wave velocity is lower in the infinite-frequency limit than in
the zero-frequency, the S2-wave velocity is equal in both frequency limits,

• Correspondence of other parameters (incl. geometrical spreading) in the
frequency limits is not simple, however, the difference in effective parameters
between two limits can be significant, and it should be analyzed prior to
averaging of log data.
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Discussion and future work

• Equivalence of the weak-anisotropy expressions in two frequency limits
suggests that we can use the isotropic model for the dispersion analysis if
anisotropy is indeed weak (!),

• The approach can be extended to more realistic TOR model with the
symmetry planes rotated about an arbitrary vector.
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Schoenberg and Muir method

C̄NN = ⟨C−1
NN⟩−1 ,

C̄TN = ⟨CTNC
−1
NN⟩ C̄NN,

C̄TT = ⟨CTT⟩ − ⟨CTNC
−1
NNCNT⟩ + ⟨CTNC

−1
NN⟩ C̄NN ⟨C−1

NNCNT⟩ ,

with

Ci
NN =

⎛
⎜
⎝

Ci33 Ci34 Ci35
Ci34 Ci44 Ci45
Ci35 Ci45 Ci55

⎞
⎟
⎠
, Ci

TN =
⎛
⎜
⎝

Ci13 Ci14 Ci15
Ci23 Ci24 Ci25
Ci36 Ci46 Ci56

⎞
⎟
⎠
, Ci

TT =
⎛
⎜
⎝

Ci11 Ci12 Ci16
Ci12 Ci22 Ci26
Ci16 Ci26 Ci66

⎞
⎟
⎠
.
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Vertically fractured VTI

CVFVTI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11b(1 − δN) C12b(1 − δN) C13b(1 − δN) 0 0 0

C11b − δN
C2

12b

C11b
C13b (1 − δN C12b

C11b
) 0 0 0

C33b − δN
C2

13b

C11b
0 0 0

SYM C44b 0 0
C44b(1 − δV ) 0

C66b(1 − δH)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where

0 ≤ δN ≡ ZNC11b

1 +ZNC11b
≤ 1, 0 ≤ δV ≡ ZV C44b

1 +ZV C44b
≤ 1, 0 ≤ δH ≡ ZHC66b

1 +ZHC66b
≤ 1.
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