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Hooke's	Law	
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Overburden stress	changes are detected by	4D	seismic
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Hatchell &	Bourne,	TLE 2005;

Barkved &	Kristiansen,	TLE	2005;



What is	the overburden stress	path?

• Geertsma (1973):	Linear	elasticity,	isotropic rock,	no poroelastic effect
+	no elastic contrast	between reservoir and	surroundings

• Constantmean stress	in	surroundingrocks

• Δpf(res)<0	for	depletion:	Vertical stress	decrease above centre of reservoir,	
horizontal stress	increase – opposite at	reservoir edges ("stress	arching")

• Stress	path governed by	the aspect ratio	(height/diameter)	of the depleting
zone +	Poisson's ratio
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Overburden Stress	Path – beyond Geertsma

• Elastic contrast	between reservoir
and	surrounding rock:	

• Stress	arching increases for	stiff
overburden

• γh >	0	if overburden is	more	than
twice as	stiff than the reservoir,	i.e.	
both vertical and	horizontal stress	
decrease

• Reservoir tilt	promotes	arching
• Non-elasticity (plasticity,	faulting)	
will affect the stress	path further

Fit to	FEM	simulations of elastic &	isotropic reservoir &	surroundings (Mahi,	2003;	Mulders,	2003).	
Reservoir @	3000	m	depth,	h/R	=	0.2,	Poisson's ratio	=	0.30	everywhere.
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Wave Velocities depend on Stress	&	Stress	Path

• Most	laboratory experiments are performed along one stress	path
only (usually isostatic)

• Here:	4	different	undrained stress	paths are applied near the in	situ
stress	state of field shale cores

1. ISO:		Incrementally isostatic (Δσz =	Δσr,	κ =	1)
2. 3AX:	Triaxial	or	Uniaxial stress	(Δσr =	0, κ =	0)
3. K0		 :				Uniaxial strain (εr	=	0,	κ =	K0)
4. CMS: Constant Mean Stress	(Δσz =	- 2Δσr,	κ =	-½)
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We denote the stress	path by	



Wave Velocities depend on Stress	&	Stress	Path

• Assume velocties depend linearly on stress	change
• OK	for	small stress	changes around in	situ state
• From	literature, shales	show	linear	stress	sensitivity over	large stress	ranges

• j:	P	or	S	wave along any direction;	pf =	pore	pressure;					=	mean stress

• This	implies linearity in	stress	path κ,	since pore	pressure change also
is	expected to	exhibit linearity (Bs &	As are Skempton parameters):
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Wave Velocities depend on Stress	&	Stress	Path

• Linearity of stress	sensitivity
with stress	path confirmed
from	axial ultrasonic P-wave
measurements in	field shale
core

• Only axial P-wave shown –
but also other modes	show	
the linear	trend

• The	influence of stress	path is	
significant!
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Stress	&	Stress	Path dependent	Pore	Pressure
Change

• This	behavior	is	in	perfect	
agreement	with	Skempton's
(1954)	relationship

• This	permits	us	to	determine	
Bs and	As
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Stress	Path dependent	R
• The	dilation	factor	or	R-
parameter	(Røste,	Landrø	&	
Stovas	,	Hatchell &	Bourne,	
2004	or	so)	is	a	measure	of	
strain	sensitivity:

• Strain	depends	on	stress	
path	(by	Hooke's	law	in	
linear	&	isotropic	
elasticity)=>
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From	laboratory to	in	situ stress	sensitivity

• Translated to	the overburden,	the
laboratory stress	path is

• If	we know the in	situ stress	path from	
geomechanical	modelling,	we can now
calculate the in	situ stress	sensitivity
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From	laboratory to	in	situ stress	sensitivity

• For	the ficticious case	of
a	reservoir at	3000m	
depth with h/R =0.2,	ν =	
0.30	and	the measured
stress	path sensitivity
from	the lab,	the in	situ
stress	sensitivity is	
determined by	the elastic
contrast	and	the tilt



Frequency	dependence?

• Similar	tests	on	Pierre	Shale	(not	
fully	saturated)	with	simultaneous	
ultrasonic	and	low	frequency	
measurements

• Quasi-static	TI	E-moduli	and	
Poisson's	ratios	are	converted	to	C33
=>	axial	P-wave	velocity	–
introduces	uncertainty

• In	this	case,	the	seismic	stress	
sensitivity	by	far	exceeds	the	
ultrasonic	one,	and	shows	the	
same	trend	as	a	function	of	stress	
path

Further	elaboration	by	Dawid	Szewczyk	et	al.,	ROSE	2016



Conclusions

• Linear	stress	sensitivity	=>	Linear	stress-path	sensitivity
• Ultrasonic	(and	low	frequency)	measurements	confirm	the	validity	of	
linear	stress	path	dependence	in	shales,	in	particular	when	tested	
near	their	in	situ	stress	state

• Geomechanical	modeling	can	translate	the	laboratory	measured	
stress	path	sensitivity	into	expected	velocity	changes	in	the	field	

• There	is	indication	that	the	stress	sensitivity	at	seismic	frequencies	
may	be	larger	than	ultrasonic	stress	sensitivity	in	shale	
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