Stress Path Evolution Due to Fluid Injection into Geological Formations

Sohrab Gheibi, Rune M. Holt

Department of Petroleum Engineering and Applied Geophysics, NTNU

Outline

- 1. Introduction
- 2. Stress path in a no fault model
- 3. Stress path in a faulted model
- 4. Conclusion

1. Introduction

 Increase of the amount of CO₂ in the atmosphere has affected the raise of the planet's temperature

- Storage Options
- Saline aquifer formations
- Depleted oil and gas reservoirs
- Storage in CO2-EOR projects
- Coal bed storage

Geomechanical issues related to CO2 storage reservoir:

- Surface uplift
- Caprock sealing

- Well integrity
- Fault reactivation

In all of the above mentioned problems the stress changes play a significant role

Stress path

- Fluid extraction or injection leads to stress changes
- Stress path determines the change of stresses inside and outside the reservoir

$$\gamma_{\nu} = \frac{\Delta \sigma_{\nu}}{\Delta P} \qquad \qquad \gamma_{h} = \frac{\Delta \sigma_{h}}{\Delta P}$$
$$\gamma_{de\nu} = \frac{\Delta \sigma_{de\nu}}{\Delta P} \qquad \qquad \gamma_{mean} = \frac{\Delta \sigma'_{mean}}{\Delta P}$$

The stress path is controlled by

- Reservoir geometry (shape; inclination)
- Elastic contrast between reservoir and surroundings
- Non-elastic / Failure processes

Numerical model of the reservoir

Reservoir thickness: 40 m Reservoir length: 600 m E= 15 GPa v=0.3 σ '1=30 MPa σ '3=15 Mpa

Compressional and Extensional stress regimes

∆P=10 MPa 2D plane-strain

FEM-DEM code (MDEM)

Fault case (60 deg.)

2. Stress path in the no fault model

Stress path profiles in the reservoir and the flanks

- The *x* stress increases in the reservoir and the flanks
- The *y*-stress decreases in the outer flanks and increases in the reservoir
- The dev. stress increase in the reservoir and the outer flanks
- The mean effective stress decreases in the reservoir and constant in the outer flanks

NTNU

Stress path profiles in the cap rock

- The x- stress decreases in the cap rock
- The *y*-stress increases in the cap rock
- The dev. stress decreases in the cap rock
- The mean effective stress is constant in the cap rock

The rock stability check

 Increase of the pore pressure decreases the effective normal stress and decreasing the frictional resistance

 $\Delta \sigma_3, \Delta \sigma_1$: Total stress change σ'_n : Effective normal stress on the plane τ : Shear stress acting on the plane

μ: Friction coefficient

Stability in an extensional stress regime

- Reservoir => Becomes more unstable
- Cap rock =>
 Becomes more unstable
- Outer flank => Becomes more Stable

11

Stability in a compressional stress regime

- Reservoir => Becomes more unstable
- Cap rock => Becomes more Stable
- Outer flank => Becomes more unstable

3. Stress path in the faulted model

The stress path profiles in the reservoir in the presence of a 60° fault

• In the hanging wall:

 Yh
 Yv

 Ydev↓
 Ymean

In the footwall:

The stress path profiles in the cap rock in the presence of a 60° fault

Yh 1 Yv 1Ydev↓ Ymean 1

In the footwall:
Yh
Yv
Ydev
Ymean

The stress state in the faulted vs. the no faulted model

 The stress state imposes a more unstable condition in the reservoir and in the cap rock

• The minimum principal Effective stress becomes negative horizontal tensile fracturing when the fault is strong enough.

• The tensile fracture may or may not effect the cap rock performance.

Fault 60 deg.

No fault

30

Initial

0

n

40

30

20

10

n

n

Shear Stress (MPa)

C)

R

10

20

Effective Normal Stress (MPa)

10

Effective Normal Stress (MPa)

30

20

Stress state in the presence of a 60° fault in a comp. *vs.* an ext. stress regime.

- The fault increases the instability of the stress state in a compressional stress regime.
- The fault doesn't affect the stability level of the stress state in an extensional stress regime.
- The cap rock becomes more unstable in a comp. regime than in an ext. regime which was opposite in the no fault model.

4. Conclusion

- The reservoir and the flanks can be unstable in a compressional regime
- The reservoir and the cap rock can be unstable in an extensional regime
- Faults/fractures can affect the stress path evolution in the reservoir-cap rock interface
- Faults show a higher impact on the stress state's stability in a compressional regime compared to an extensional regime.
- The reservoir and cap rock in footwall of the fault is more unstable than the hanging wall
- Tensile fractures can occur in the reservoir in the footwall due to the stress changes caused by the fault effect
- The interaction of the tensile fractures with pre-existing fractures crossing the cap rock needs further investigation

Thanks for you attention

Acknowledgment

 This work been produced with partial support from the BIGCCS Centre (for SG), performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME).

