Use of wavefront attributes for tomographic model building with active and passive seismic data

D. Gajewski, A. Bauer, B. Schwarz and J. Walda

Institute of Geophysics, University of Hamburg Wave Inversion Technology (WIT)

• ZO CRS stack is a powerful tool for data analysis

- ZO CRS stack is a powerful tool for data analysis
- Tomography based on ZO wavefront attributes (Duveneck, 2004)

W

For a consistent velocity model NIP-waves focus at the NIP for zero traveltime when propagated back to the subsurface (Duveneck, 2004).

- picking in stacked data
- ray tracing
- model update

- ZO CRS stack is a powerful tool for data analysis
- Tomography based on ZO wavefront attributes (Duveneck, 2004)
- Results thus far based on reflections

- ZO CRS stack is a powerful tool for data analysis
- Tomography based on ZO wavefront attributes (Duveneck, 2004)
- Results thus far based on reflections
- Diffraction moveout can be described entirely in ZO

Decomposition Principle

- ZO CRS stack is a powerful tool for data analysis
- Tomography based on ZO wavefront attributes (Duveneck, 2004)
- Results thus far based on reflections
- Diffraction moveout can be described entirely in ZO
- Diffractions and passive events are strongly related

- ZO CRS stack is a powerful tool for data analysis
- Tomography based on ZO wavefront attributes (Duveneck, 2004)
- Results thus far based on reflections
- Diffraction moveout can be described entirely in ZO
- Diffractions and passive events are strongly related
- \rightarrow Use diffracted and passive events for velocity inversion

Wavefront attribute estimation

- Wavefront attribute estimation
- Wavefront tomography

- Wavefront attribute estimation
- Wavefront tomography
- Simple synthetic data examples
 - Diffraction
 - Passive seismics

- Wavefront attribute estimation
- Wavefront tomography
- Simple synthetic data examples
 - Diffraction
 - Passive seismics
- Field data example

- Wavefront attribute estimation
- Wavefront tomography
- Simple synthetic data examples
 - Diffraction
 - Passive seismics
- Field data example
- Conclusions and outlook

• Active seismics: (nonhyperbolic) ZO CRS stack

$$t = t_s(t_0, \alpha, R_{NIP}, R_N) + t_g(t_0, \alpha, R_{NIP}, R_N)$$

Active seismics: (nonhyperbolic) ZO CRS stack

$$t = t_s(t_0, \alpha, R_{NIP}, R_N) + t_g(t_0, \alpha, R_{NIP}, R_N)$$

• Diffractions: Only one wavefront $(R_N = R_{NIP} \stackrel{!}{=} R)$

$$t = t_s(t_0, \alpha, R) + t_g(t_0, \alpha, R)$$

Active seismics: (nonhyperbolic) ZO CRS stack

$$t = t_s(t_0, \alpha, R_{NIP}, R_N) + t_g(t_0, \alpha, R_{NIP}, R_N)$$

• Diffractions: Only one wavefront $(R_N = R_{NIP} \stackrel{!}{=} R)$

$$t = t_s(t_0, \alpha, R) + t_g(t_0, \alpha, R)$$

• Passive seismics: One additional attribute (t_s)

$$t = t_s + t_g(t_0, \alpha, R)$$

Wavefront tomography: Image space

Wavefront tomography: Model space

• Input: *n* picked data points $(x_0, t_0, \alpha, R)_i$

- Input: *n* picked data points $(x_0, t_0, \alpha, R)_i$
- Condition: wavefronts focus at zero time

- Input: *n* picked data points $(x_0, t_0, \alpha, R)_i$
- Condition: wavefronts focus at zero time
- Minimize misfit between measured data d and modeled data d_{mod} = f(m)

$$\Psi(\mathbf{m}) = \frac{1}{2} \|\mathbf{d} - \mathbf{f}(\mathbf{m})\|_{D}^{2} + \Lambda [\partial_{xx} v(x, z), \partial_{zz} v(x, z)]$$

- Input: *n* picked data points $(x_0, t_0, \alpha, R)_i$
- Condition: wavefronts focus at zero time
- Minimize misfit between measured data d and modeled data d_{mod} = f(m)

$$\Psi(\mathbf{m}) = \frac{1}{2} \|\mathbf{d} - \mathbf{f}(\mathbf{m})\|_{D}^{2} + \Lambda [\partial_{xx} v(x, z), \partial_{zz} v(x, z)]$$

• Output: smooth velocity model v(x, z)

Diffraction example: Input semblance

Input semblance

Diffraction example: Picked data points

Picked data points

Diffraction example: Initial model

Diffraction example: Inverted model

Inverted model

Diffraction example: Inverted model

Inverted model

Diffraction example: Correct model

Correct model

Passive data example

Passive data example

Passive attribute panels

Passive attribute panels

Joint location and velocity inversion

Joint location and velocity inversion

Wavefront tomography

Joint location and velocity inversion

Field data: Stack

Field data: Input semblance

Input semblance

Field data: Joint inversion

Inverted model

Field data: Joint inversion

Wavefront tomography is an efficient tool for velocity inversion

- Wavefront tomography is an efficient tool for velocity inversion
- No interaction with prestack data volume

- Wavefront tomography is an efficient tool for velocity inversion
- No interaction with prestack data volume
- Use of diffractions enhances stability and model resolution

- Wavefront tomography is an efficient tool for velocity inversion
- No interaction with prestack data volume
- Use of diffractions enhances stability and model resolution
- Joint passive event location and velocity inversion

- Improvement of the attribute estimation
 - Global optimization

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing
 - Diffraction separation and enhancement

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing
 - Diffraction separation and enhancement
 - Multiple suppression

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing
 - Diffraction separation and enhancement
 - Multiple suppression
 - Passive source time accuracy

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing
 - Diffraction separation and enhancement
 - Multiple suppression
 - Passive source time accuracy
- Implementation of a global focusing criterion

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing
 - Diffraction separation and enhancement
 - Multiple suppression
 - Passive source time accuracy
- Implementation of a global focusing criterion
 - → Highly constrained wavefront tomography

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing
 - Diffraction separation and enhancement
 - Multiple suppression
 - Passive source time accuracy
- Implementation of a global focusing criterion
 - → Highly constrained wavefront tomography
- Application in 3D

- Improvement of the attribute estimation
 - Global optimization
 - Conflicting dip processing
 - Diffraction separation and enhancement
 - Multiple suppression
 - Passive source time accuracy
- Implementation of a global focusing criterion
 - → Highly constrained wavefront tomography
- Application in 3D
- Anisotropy

Applied Seismics Group Hamburg

Sponsors of the WIT consortium

TGS

Seismic Un*x

NORSAR

Field data: Picked data points

Picked data points