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W I TWavefront Tomography

For a consistent velocity model NIP-waves focus at the NIP for zero
traveltime when propagated back to the subsurface (Duveneck, 2004).
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Active seismics: (nonhyperbolic) ZO CRS stack

t = ts(t0, α,RNIP ,RN) + tg(t0, α,RNIP ,RN)

Diffractions: Only one wavefront (RN = RNIP
!

= R)
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Passive seismics: One additional attribute (ts)
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W I TWavefront tomography: Inverse problem

Input: n picked data points (x0, t0, α,R)i

Condition: wavefronts focus at zero time

Minimize misfit between measured data d and modeled data
dmod = f(m)

Ψ(m) =
1
2
∥∥d − f(m)

∥∥2
D + Λ

[
∂xxv(x , z), ∂zzv(x , z)

]
Output: smooth velocity model v(x , z)
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W I TDiffraction example: Picked data points
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W I TDiffraction example: Initial model
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W I TDiffraction example: Inverted model
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W I TDiffraction example: Correct model

0

0.5

1.0

D
ep

th
 [k

m
]

0 1 2 3 4 5
Lateral distance [km]

Correct model

2.0

2.5

V
el

oc
ity

 [k
m

/s
]



W I TPassive data example



W I TPassive data example



W I TPassive attribute panels



W I TPassive attribute panels
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W I TField data: Stack



W I TField data: Input semblance
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W I TField data: Reflection-based inversion
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W I TField data: Joint inversion
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W I TField data: Joint inversion
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Multiple suppression
Passive source time accuracy

Implementation of a global focusing criterion
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W I TField data: Picked data points
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