Dilation factor as function of geological time

Kenneth Duffaut Associate Professor

Faculty of Engineering Science and Technology Department of Petroleum Engineering and Applied Geophysics RoSe meeting,IPT, Trondheim, 26th April, 2016

Introduction 4D or time-lapse traveltime analysis

$$\frac{\Delta t_0(x_0)}{t_0(x_0)} \approx \frac{\Delta z(x_0)}{z(x_0)} - \frac{\Delta v_{p0}(x_0)}{v_{p0}(x_0)}$$
 (Landrø and Stammeijer, 2004)
$$\frac{\Delta v_{p0}(x_0)}{v_{p0}(x_0)} = \alpha \frac{\Delta z(x_0)}{z(x_0)}$$
 (Røste et al., 2005)

 $R = -\alpha$

(Hatchell et al., 2005)

Relative thickness change and velocity change

(Figure courtesy: Røste et al., 2006)

Outline

- Introduction
- The model
- Modelling results
- Conclusions

Sediment Compaction

 \Box NTNU

Porosity-Velocity depth trends – North Sea

The model

Vertical thinning due to quartz cementation in sandstones

Examples of stylolites and quartz cement

(Figure courtesy: Porten Walderhaug, 2012)

Model assumptions

- Local redistribution, no import or export of silica
- Horizontal stylolites volume reduction is a vertical thinning
- No mechanical compaction takes place
- No other diagenetic precipitation or dissolution reactions are active

Volume change at constant temperature

100 meter thick sandstone layer with 25% porosity @ t=0

(Walderhaug et al., 2001)

NTNU

100

Porosity-volume change Constant temperature

100 meter thick sandstone layer with 25% porosity @ t=0

Velocity-porosity model Consolidated sandstones from NCS

Dilation factor (α) as function of time Constant temperature

$$\alpha = \frac{\Delta v_{p0}(x_0, t)}{v_{p0}(x_0, t)} \left(\frac{\Delta z(x_0, t)}{z(x_0, t)}\right)^{-1}$$

Volume change during a linear temperature change a.f.o. time

(Walderhaug et al., 2001)

Dilation factor as function of time Linear temperature change

$$\alpha = \frac{\Delta v_{p0}(x_0, t)}{v_{p0}(x_0, t)} \left(\frac{\Delta z(x_0, t)}{z(x_0, t)}\right)^{-1}$$

Dilation factor as function of time Assuming a linear temperature change

$$\alpha = \frac{\Delta v_{p0}(x_0, t)}{v_{p0}(x_0, t)} \left(\frac{\Delta z(x_0, t)}{z(x_0, t)}\right)^{-1}$$

Conclusions

- The dilation factor (α) of the reservoir is described as function of the rate of vertical thinning of sandstones due to quartz cementation.
- Two cases are tested
 - Constant temperature
 - Linear temperature increase
- Given the model assumptions
 - The dilation factor range between -1.5 to -1.75

Spatial zero offset traveltime analysis RoSe presentation 2015

 t_0 = two-way vertical time thickness of unit at x_0 x_0 = coordinate reference position along a line x_1 = a new coordinate position along the line z = thickness of formation unit v_{p0} = vertical P-wave velocity of unit Δ = spatial difference in physical parameters α = Dilation factor

$$t_0(x_0) = \frac{2z(x_0)}{v_{p0}(x_0)}$$

$$\frac{\Delta t_0(x_1,x_0)}{t_0(x_0)} \approx \frac{\Delta z(x_1,x_0)}{z(x_0)} - \frac{\Delta v_{p0}(x_1,x_0)}{v_{p0}(x_0)}$$

$$\frac{\Delta v_{p0}(x_1, x_0)}{v_{p0}(x_0)} = \alpha(x_0) \frac{\Delta z(x_1, x_0)}{z(x_0)}$$

$$\frac{\Delta z(x_{1,}x_{0})}{z(x_{0})} = \frac{1}{(1-\alpha(x_{0}))} \frac{\Delta t_{0}(x_{1,}x_{0})}{t_{0}(x_{1,}x_{0})}$$

$$\frac{\Delta v_{p0}(x_{1,}x_{0})}{v_{p0}(x_{0})} = \frac{\alpha(x_{0})}{(1 - \alpha(x_{0}))} \frac{\Delta t_{0}(x_{1,}x_{0})}{t_{0}(x_{1,}x_{0})}$$

Acknowledgement

• RoSe for giving me the opportunity to present

Thank you for your attention

