

Characterizing ghost cavitation noise generated by marine air gun arrays

Babak Khodabandeloo, PhD candidate NTNU

Supervisor: Prof. Martin Landrø, NTNU

ROSE Meeting April 25-28, 2016 Trondheim

Marine life and sound

The impact on marine life

Hearing curves - audiogram

Loudness of sound depends on both its Amplitude and Frequency and is different for different species.

Various marine seismic sources

Dynamite (pre 1960)

- Air-gun: 1960 Repeatability and safety
- Marine Vibrators (Mid 1960s)
- Low-level Acoustic Combustion Source (2009)
 - Underwater tunable organ-pipe sound source (2007)

What are Airgun and Airgun Arrays?

Energy Spectrum of Airguns

Some of efforts to reduce high frequency contents of air-guns:

Airgun silencer (Nedwell et al, 2005)

maximum of 6 dB of attenuation (frequencies > 700 Hz) in 50 bar air guns

High frequency sound from air gun arrays: ghost cavitation

Comparison of single gun and large array

Photos from high frequency experiment

Landrø et al., 2016, Geophysics

Expect cavitation between 7 and 14 ms, and close to surface

Nature's own cavity generator: The pistol shrimp

Versluis, M., et. Al. (2000). Science, 289(5487), 2114-2117.

)

Peak sound is not happened when full closure of the claw is achieved! It is generated by cavitation

Field Test

Pressure (bar.m)

40 20

0

-20

0.1

Time (ms)

25

0.3

Black-sea offshore Turkey (2008)

Shooing Vessel: M/V Malene Ostervold

Several configurations of source array were tested:

- Single gun
- Cluster
- Center Array
- Standad Array

Sampling Frequency: 125 kHz

High frequency signal varies with angle

Can we determine the size and shape of the cavity cloud?

Spherical Cloud

Raw Signal at receiver (shot 20):

Distribution of Different Cavity bubble sizes:

Spherical Cloud

Normalized Accumulated Energy (Comparison of Simulated and Measured Signal)

Assuming a spherical cloud does not work!

Ellipsoid shape cloud

×10⁻³

Cavity Radius (m)

Raw Signal at receiver (shot 20):

Ellipsoid shape cloud

Normalized Accumulated Energy

(Comparison of Simulated and Measured field Signal)

Ellipsoid shape cloud is better than spherical, But still not doesn't capture the field data!

There should be a progressive Formation of the cloud!

Ghost cavitation cloud predicted by source modeling software

Ghost Cavitation Cloud predicted by **NUCLEUS** (source modelling Software)

The results from NUCLEUS shows progressive formation of the Ghost cavitation cloud.

Landrø et al., 2016, Geophysics

Modeling Progressive Formation of the Ghost cavitation cloud:

Modeling Progressive Formation of the Ghost cavitation cloud:

Results of Progressive Formation of the Ghost cavitation cloud:

Conclusions

- The ghost cavitation hypothesis is confirmed by comparison between modeled and measured high frequency data
- There should be a progressive creation of cavity bubbles
- The rate of cavity creation should be non-uniform!
- Possible to reduce the amount of cavitation noise by increasing the distance between airgun subarrays

Various marine seismic sources

Impulsive:

Pre-1960: Dynamite

http://www.cgg.com/

Alternatives:

Marine Vibrators (Mid 1960s)

R. Tenghamn (2006). Exploration Geophysics, 37(4), 286-291.

Air gun: 1960 Repeatability and safety

http://www.geoexpro.com/articles/2010/01/ marine-seismic-sources-part-i

Low-level Acoustic Combustion Source

Askeland, B., et .al. (2009). *J of Appl. Geop.*, *67*(1), 66-73.

Underwater tunable organ-pipe sound source

Morozov, A. K., et al.(2007). *The J of the Acoust. Soc. of Am.*, 122(2), 777-785.

Ghost Cavitation – Cavitations around structure

Accumulative energy of simulation and measurement for the nearest shot (No.

Accumulated Energy of simulated signal for shots 15 to 20

1 kHz high pass filter

Airgun is still the preferred marine seismic source - what about marine vibrators?

- Need a big piston to create low frequencies
- Marine vibrators become large and impractical
- Long sweeps are challenging for marine acquisition