Reverse-time true amplitude migration

B. Arntsen

NTNU
Department of Petr. Techn. and Applied Geophysics borge.arntsen@ntnu.no

Rose Meeting, April 2016

Incorrect AVO behavior

Correct reflection coefficients

[Arntsen et al., 2013] [Zhang et al., 2014]

Overview

1. Introduction
2. True Amplitude Imaging condition
3. Numerical examples
4. Conclusions

Introduction

1. AVO analysis important for exploration and reservoir characterization
2. Output gathers from migration should ideally be equal to angle-dependent reflection coefficient
3. The most commonly used imaging condition in Reverse-time migration gives gathers with incorrect angle-dependence
4. Simple modification of Claerbouts (1971) imaging condition gives correct angle dependence
5. Theoretically sound

Imaging condition

\longleftarrow Offset \longrightarrow

Imaging condition

Imaging condition

Depth

Imaging condition

Imaging condition

Imaging condition

Using an approach described by f.ex [Vasconcelos et al., 2010] one finds: New imaging condition for multicomponent streamer data:

$$
\begin{align*}
r\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\sum_{\mathbf{x}_{s}} \int d t \partial_{z} p_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \\
& -\sum_{\mathbf{x}_{s}} \int d t p_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) \partial_{z} p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{1}
\end{align*}
$$

New imaging condition for conventional streamer data:

$$
\begin{equation*}
r\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}_{s}} \int d t \partial_{z} p_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{2}
\end{equation*}
$$

[Ordoñez et al., 2014] Old imaging condition: (Rickett and Sava, 2002)

$$
\begin{equation*}
r_{c}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}_{s}} \int d t p_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{3}
\end{equation*}
$$

Imaging condition

Imaging condition

Plane wave reflection coefficient:

$$
\begin{equation*}
r\left(\mathbf{x}, \mathbf{k}_{h}, z\right)=\int d \mathbf{h} \exp \left(i \mathbf{k}_{h} \cdot \mathbf{h}\right) r\left(\mathbf{x}, \mathbf{h}=\mathbf{x}-\mathbf{x}^{\prime}\right) \tag{4}
\end{equation*}
$$

Numerical example

Numerical example

Numerical example

Data

Imaging condition

Data at depth:

Depth

Numerical example

$p_{s c}\left(\mathbf{x}, \mathbf{x}_{s}, t\right)$ at depth of 1000 m.

Numerical example

$\hat{p}_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right)$ at depth of 1000 m

Imaging condition

New imaging condition:

$$
\begin{equation*}
r\left(\mathbf{x}, \mathbf{x}^{\prime}, t=0\right)=\sum_{\mathbf{x}_{s}} \int d t \partial_{z} p_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{5}
\end{equation*}
$$

Old imaging condition:

$$
\begin{equation*}
r_{c}\left(\mathbf{x}, \mathbf{x}^{\prime}, t=0\right)=\sum_{\mathbf{x}_{s}} \int d t p_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{6}
\end{equation*}
$$

Numerical example

Reflectivity $p_{s c}\left(\mathbf{x}-\mathbf{x}^{\prime}, t=0\right)$ at depth of 1000 m using new imaging condition

Numerical example

Reflectivity $p_{s c}\left(\mathbf{x}-\mathbf{x}^{\prime}, t=0\right)$ at depth of 1000 m using old imaging condition

Numerical example

Reflectivity $p_{s c}\left(\mathbf{x}-\mathbf{x}^{\prime}, t=0\right)$ at all depths using new imaging condition

Offset CIP gather

Numerical example

Full section $p_{s c}\left(\mathbf{x}-\mathbf{x}^{\prime}=0, t\right)$ at all depths using new imaging condition

Zero offset section

Numerical example

Plane wave reflection coefficient $p_{s c}\left(\mathbf{x}-\mathbf{x}^{\prime}, t\right)$ at depth of 1000 m using new imaging condition

Numerical example

Plane wave reflection coefficient $p_{s c}\left(\mathbf{x}-\mathbf{x}^{\prime}, t\right)$ at depth of 1000 m using old imaging condition

Numerical example

Reflection coefficient at three different depths using new imaging condition

Plane wave reflection coefficient

Numerical example

Reflection coefficient at three different depths using old imaging condition

Plane wave reflection coefficient

Summary/Conclusion

- New imaging condition gives correct Amplitude-Versus-Angle behavior
- Easy to implement for reverse-time migration
- Simple modification of existing imaging condition

Acknowledgements

ROSE consortium for financial support

References

R Arntsen，B．，A．Kritski，B．Ursin，and L．Amundsen，2013， Shot－profile true amplitude crosscorrelation imaging condition： Geophysics，78，S221－S231．

围 Ordoñez，A．，W．Söllner，T．Klüver，and L．J．Gelius，2014， Migration of primaries and multiples using an imaging condition for amplitude－normalized separated wavefields： Geophysics，79，S217－S230．
國 Vasconcelos，I．，P．Sava，and H．Douma，2010，Nonlinear extended images via image－domain interferometry：Geophysics， 75，SA105－SA115．
雷 Zhang，Y．，A．Ratcliffe，G．Roberts，and L．Duan，2014， Amplitude－preserving reverse time migration：From reflectivity to velocity and impedance inversion：Geophysics，79， S271－S283．

Imaging condition

$$
\begin{align*}
p_{s c}\left(\mathbf{x}, \mathbf{x}_{s}, t\right)= & -\int_{S} d S\left(\mathbf{x}^{\prime}\right) \rho^{-1}\left(\mathbf{x}^{\prime}\right) \partial_{z} p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) * \hat{g}\left(\mathbf{x}, \mathbf{x}^{\prime}, t\right) \\
& +\int_{S} d S\left(\mathbf{x}^{\prime}\right) \rho^{-1}\left(\mathbf{x}^{\prime}\right) \partial_{z} \hat{g}\left(\mathbf{x}, \mathbf{x}^{\prime}, t\right) * p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{7}\\
p_{s c}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) \approx & \int_{S} d S\left(\mathbf{x}^{\prime}\right) \rho^{-1}\left(\mathbf{x}^{\prime}\right) 2 \partial_{z} \hat{g}\left(\mathbf{x}, \mathbf{x}^{\prime}, t\right) * p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{8}
\end{align*}
$$

- $\hat{g}\left(\mathbf{x}, \mathbf{x}_{s}, t\right)$: Anticausal background Green's function
- ρ : Density
- *: Time convolution

Imaging condition

$$
\begin{align*}
p_{s c}\left(\mathbf{x}, \mathbf{x}^{\prime}, t\right) * \hat{s}(t) & = \\
& -\int_{S} d S\left(\mathbf{x}_{s}\right) \rho^{-1}\left(\mathbf{x}_{s}\right) \partial_{z} p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) * \hat{p}_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right) \\
& +\int_{S} d S\left(\mathbf{x}_{s}\right) \partial_{z} \hat{p}_{0}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) * p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{9}\\
p_{s c}\left(\mathbf{x}, \mathbf{x}^{\prime}, t\right) * \hat{s}(t) & \approx \int_{S} d s\left(\mathbf{x}_{s}\right) \partial_{z} \hat{p}_{0}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) * p_{s c}\left(\mathbf{x}^{\prime}, \mathbf{x}_{s}, t\right) \tag{10}
\end{align*}
$$

- $\hat{p}_{0}\left(\mathbf{x}, \mathbf{x}_{s}, t\right)$: Anticausal downgoing wavefield

