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Incorrect AVO behavior



Correct reflection coefficients

[Arntsen et al., 2013] [Zhang et al., 2014]
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Introduction

1. AVO analysis important for exploration and reservoir
characterization

2. Output gathers from migration should ideally be equal to
angle-dependent reflection coefficient

3. The most commonly used imaging condition in Reverse-time
migration gives gathers with incorrect angle-dependence

4. Simple modification of Claerbouts (1971) imaging condition
gives correct angle dependence

5. Theoretically sound
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Imaging condition
Using an approach described by f.ex [Vasconcelos et al., 2010] one
finds: New imaging condition for multicomponent streamer data:

r(x, x′) =
∑
xs

∫
dt ∂zp0(x, xs , t)psc(x′, xs , t)

−
∑
xs

∫
dt p0(x, xs , t)∂zpsc(x′, xs , t) (1)

New imaging condition for conventional streamer data:

r(x, x′) =
∑
xs

∫
dt ∂zp0(x, xs , t)psc(x′, xs , t) (2)

[Ordoñez et al., 2014] Old imaging condition: (Rickett and Sava,
2002)

rc(x, x′) =
∑
xs

∫
dt p0(x, xs , t)psc(x′, xs , t) (3)
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Imaging condition

Plane wave reflection coefficient:

r(x, kh, z) =

∫
dh exp(ikh · h)r(x,h = x− x′) (4)
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Imaging condition
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Numerical example

psc(x, xs , t) at depth of 1000 m.



Numerical example

p̂0(x, xs , t) at depth of 1000 m



Imaging condition

New imaging condition:

r(x, x′, t = 0) =
∑
xs

∫
dt ∂zp0(x, xs , t)psc(x′, xs , t) (5)

Old imaging condition:

rc(x, x′, t = 0) =
∑
xs

∫
dt p0(x, xs , t)psc(x′, xs , t) (6)



Numerical example
Reflectivity psc(x− x′, t = 0) at depth of 1000 m using new
imaging condition



Numerical example
Reflectivity psc(x− x′, t = 0) at depth of 1000 m using old
imaging condition



Numerical example
Reflectivity psc(x− x′, t = 0) at all depths using new imaging
condition



Numerical example
Full section psc(x− x′ = 0, t) at all depths using new imaging
condition



Numerical example

Plane wave reflection coefficient psc(x− x′, t) at depth of 1000 m
using new imaging condition



Numerical example

Plane wave reflection coefficient psc(x− x′, t) at depth of 1000 m
using old imaging condition



Numerical example

Reflection coefficient at three different depths using new imaging
condition



Numerical example

Reflection coefficient at three different depths using old imaging
condition



Summary/Conclusion

I New imaging condition gives correct Amplitude-Versus-Angle
behavior

I Easy to implement for reverse-time migration

I Simple modification of existing imaging condition
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Imaging condition

psc(x, xs , t) = −
∫
S
dS(x′) ρ−1(x′)∂zpsc(x′, xs , t) ∗ ĝ(x, x′, t)

+

∫
S
dS(x′)ρ−1(x′)∂z ĝ(x, x′, t) ∗ psc(x′, xs , t) (7)

psc(x, xs , t) ≈
∫
S
dS(x′)ρ−1(x′)2∂z ĝ(x, x′, t) ∗ psc(x′, xs , t) (8)

I ĝ(x, xs , t): Anticausal background Green’s function

I ρ: Density

I ∗: Time convolution



Imaging condition

psc(x, x′, t) ∗ ŝ(t) =

−
∫
S
dS(xs)ρ−1(xs) ∂zpsc(x′, xs , t) ∗ p̂0(x, xs , t)

+

∫
S
dS(xs)∂z p̂0(x′, xs , t) ∗ psc(x′, xs , t) (9)

psc(x, x′, t) ∗ ŝ(t) ≈
∫
S
ds(xs)∂z p̂0(x′, xs , t) ∗ psc(x′, xs , t) (10)

I p̂0(x, xs , t): Anticausal downgoing wavefield


