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How to: Finite Difference Modelling

Model a given differential equation, e.g.:
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1. Discretise each parameter and variable onto a 3D cube.

2. Approximate derivatives by weighted sums.

3. Update each variable across a small ∆t, many times.
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For example ...
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Industry scale Finite Difference Modelling?

Model a seismic shot:

I Wavelengths down to 10m.

I 4m×4m×4m cells.

I 1000 × 500 × 2000 grid cells.

I 48GB of data.

I A consumer GPU typically fits 4GB-8GB of data.
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The Memory Barrier – Data Transfer Slowdown

Theoretical Measured
Work Speed Time Speed Time

48Gb 16Gb/s 3s 5.3Gb/s 9.2s
5 · 1011flop 4 · 1012flop/s 0.1s (4 · 1011flop/s) (1.3s)

180Gb 288Gb/s 0.6s 140Gb/s 1.3s

I Need computational time ≥ IO time to hide tranfsers.

I This is satisfied when we do 7 time steps per pass.

I 2L(Q + 1) slices with differentiator length of 2L and Q steps.

I L = 8 and Q = 7 gives < 3GB for the reference model.
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What is the running time?

... for the example model on a three year old consumer GPU
($700)?

I ≈ 15% slowdown compared to in-core.

I 1.46s per time step. 20000 time steps in 8 hours.

I In-house CPU code would use 6 weeks on a single core ...

I ... or 1 week in parallel on an 8-core CPU.
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I Computational cost proportional to λmin
∆x

4
.

I Shot-parallelism is easily exploited for migration and inversion.

I Arrange GPUs in a pipeline for a lower-level parallelism.
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