Imaging and Full Waveform Inversion of seismic data from the CO_2 gas cloud at Sleipner

Espen Birger Raknes, Børge Arntsen, and Wiktor Weibull

Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: espen.raknes@ntnu.no

ROSE Meeting 2015 April 28th 2015

Background

- The applications of full waveform inversion (FWI) on synthetic and field data the last decade have proved that FWI is a promising method for parameter model estimation
- The increase in computational power leads to an increase in possible problem sizes and type of wave phenomena included in the modeling and inversion
- Limited number of 3D applications in the literature

Objectives

- Apply three dimensional elastic isotropic FWI on field time-lapse data from the Sleipner area
- Use the inverted elastic models to obtain depth migration seismic images of the area before and after ten years of injection of CO₂.
- Investigate the migration path for the injected CO₂ gas.

Outline

• Theory

- Full waveform inversion
- Imaging work flow
- Results
 - Baseline inversion
 - Monitor inversion
 - Seismic images
- Conclusions

A quick overview of full waveform inversion

Overall goal

Find a parameter model from which it is possible to create synthetic data that is close to some measured data

Define $S(\mathbf{m})$ as the measure between synthetic and measured data. The FWI is then the problem

```
\mathop{\arg\min}_{\mathbf{m}} S(\mathbf{m})
```

A quick overview of full waveform inversion

Overall goal

Find a parameter model from which it is possible to create synthetic data that is close to some measured data

Define $S(\mathbf{m})$ as the measure between synthetic and measured data. The FWI is then the problem

$$\underset{\mathbf{m}}{\arg\min} S(\mathbf{m})$$

Solved using an iterative method

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k \mathbf{H}_k^{-1} \mathbf{g}_k,$$

- \mathbf{m}_k model at iteration k
- \mathbf{g}_k gradient of $S(\mathbf{m})$ at iteration k
- \mathbf{H}_k Hessian of $S(\mathbf{m})$ at iteration k
- α_k step length at iteration k

Schematic view of FWI

Synchronization In parallel

Time-lapse full waveform inversion

Goal

Use full waveform inversion to quantify changes in time for parameters affecting wave propagation.

May be used

- as monitoring tool during the life-time of a reservoir
- to monitor injection of CO₂ in CCS experiments
- quantify amount of injected CO_2

Time-lapse full waveform inversion

Goal

Use full waveform inversion to quantify changes in time for parameters affecting wave propagation.

Challenges

- Need to perform at least two inversions
- The method may introduce artifacts in the time-lapse images due to for instance
 - non-linearity
 - ill-posedness
 - data differences
 - bad repeatability in the time-lapse data

Conclusions

Results: Sleipner data details

- Baseline dataset: 1994 survey
 - 852 shots, 570840 data traces
 - 1700 m offset
- Monitor dataset: 2006 survey
 - 1180 shots, 1274400 data traces
 - 1700 m offset

Fold maps: left: baseline, right: monitor.

Inversion strategy

- Invert for v_p , and couple v_s and ρ using empirical relationships
- Invert sequentially using the frequency bands: 6–8Hz, 6–11Hz, 6–15Hz.
- Source signatures are estimated using FWI
- First, invert for baseline data to obtain a baseline elastic model
- Second, use target-oriented FWI when inverting for the monitor data

Estimated source signatures

Left: 6–8 Hz, middle 6–11 Hz, right: 6–15 Hz.

Baseline FWI: Vertical slice

Initial model

Baseline FWI: Vertical slice

Final model

Baseline FWI: Data

Comparison: left: 6–8 Hz, middle: 6–11 Hz, right: 6–15 Hz.

Baseline migration: Vertical slice

Initial model

Baseline migration: Vertical slice

Final inverted model

Baseline FWI: Horizontal slice

 v_p : left: initial, right: final.

Baseline FWI: Horizontal slice

Initial: left: seismic image, right: overlay.

Baseline FWI: Horizontal slice

Final: left: seismic image, right: overlay.

Monitor FWI: Vertical slice

Monitor FWI: Vertical slice

Monitor FWI: Vertical slice

Migration: Vertical slice

Close-up of gas cloud: top: baseline, bottom: monitor.

Migration: Horizontal slice

Slice at z = 881.25m: left: baseline, middle: monitor, right: overlay

Migration: Horizontal slice

Slice at z = 918.75m: left: baseline, middle: monitor, right: overlay

Migration: Horizontal slice

Slice at z = 943.75m: left: baseline, middle: monitor, right: overlay

Migration: Different migration models

Slice at z = 918.75m: left: baseline FWI model, right: monitor FWI model

Conclusions

- FWI improves the elastic models and matches the field data
- FWI produces models that can improve the resolution and focusing of seismic images
- Injected gas at Sleipner has migrated into structures that are visible on the baseline images
- The gas has migrated upwards through a fault

Theory

Results

Conclusions

Acknowledgements

We thank the BIGCCS centre and the ROSE consortium for financing this research.