Combining time lapse seismic and gravity to estimate CO₂ saturation changes at Sleipner

M. Landrø and M. Zumberge

Sleipner CO₂ storage

- Reservoir unit at 800-1100 m depth
- One CO₂ injector
- Over 12 Million tons CO₂ have been injected
- Norway can store 50
 Gtons offshore (NPD)
- Yearly global emission was 32 Gtons in 2010 and 40 Gtons in 2014...

Sleipner CO₂ monitoring

• Seismic monitoring data indicates a northerly extension to the plume, especially in the uppermost layer 9

Seismic amplitude difference (2008-1994)

Data courtesy of Stato

ravity data: 30 repeated gravity measurement

Time lapse gravity - Sleipner CO₂ plume

by H. Alnes, O. Eiken, S. Nooner, G. Sasagawa, T. Stenvold and M. Zumb

nple rock physics model for Sleipner CO₂-injec

gy for how to combine time lapse seismic and

	CO ₂ - saturation 0-0.3	CO ₂ - saturation 0.3-1	Spatial resolution
Seismi c			
Gravit y			

Spatial resolution is most important =>

- 1. Use time lapse seismic to estimate saturation changes up to 0.3
- 2. Use time lapse gravity in areas where seismic estimates are above 0.3 or where there is a seismic

e lapse AVO for density and velocity estimatio

$$\Delta R = \frac{1}{2} \left(\frac{\Delta \rho}{\rho} + \frac{\Delta \alpha}{\alpha} \right) + \frac{\Delta \alpha}{2\alpha} \tan^2 \theta \qquad \text{Landrø, Geophysics, 2003}$$

$$\Delta N = \frac{1}{2} \left(\frac{\Delta \rho}{\rho} + \frac{\Delta \alpha}{\alpha} \right) + \frac{\Delta \alpha}{2\alpha} \tan^2 \theta_N \quad \Delta F = \frac{1}{2} \left(\frac{\Delta \rho}{\rho} + \frac{\Delta \alpha}{\alpha} \right) + \frac{\Delta \alpha}{2\alpha} \tan^2 \theta_F$$

$$\Delta \alpha = \frac{2(\Delta F - \Delta N)}{\tan^2 \theta_F - \tan^2 \theta_N} \qquad \frac{\Delta \rho}{\rho} = 2\Delta N - 2\frac{(\Delta F - \Delta N)}{\tan^2 \theta_F - \tan^2 \theta_N} \left(1 + \tan^2 \theta_N \right)$$

Calibration step 1

erage value of 0.06 obtained by multiplication with 0.02

2001 RMS near offset amplitude map (26 ms window covering the top reservoir interface)

Modeled zero offset response from well log input: -0.06

=> Use a global scalar of 0.02 to achieve this

Far offset calibration (step 2)

Q-value fitted by trial and error until a good match with modeled AVO-response is obtained – shown in next slide

Calibration of seismic data - determining Q

Notice: Q=80 will fit both 0-0.2 and 0-0.3 scenario

Estimating the 1999-2001 saturation change

scaling factor is 1, and the RMS 2001-mean =

Saturation changes for the upper layer 2001-2008

Using a thick RMS window: 850-1100 ms

Note: A new global scalar was determined (0.06), and the Q kept constant at 80

m: NO SIGNAL BELOW PLUME IN 2001 - shadow effect and the 0.

Gravity data and constrained inversion

circles are gravity measurements – size proportional to gravity change ground color map represents MODELED responses from estimated saturation cha

strained inversion gives a better fit to the measured gravity dat

Inversion - LS error

Assume that the spatial distribution suggested by the time lapse seismic inversion is OK, and simply scale this distribution by one single scalar in the shadow zone => scalar = 2.4

Before and after using gravity data

Gravity change (2002-2008) versus radial distance from the injection point compared to modeled results (5.88 Mtons injected)

Effect of increasing the global scalar by 30 %

Effect of increasin Q from 80 to 100

Estimated density changes $\frac{\Delta \rho}{\rho} = 2\Delta N - 2 \frac{(\Delta F - \Delta N)}{\sin^2 \theta_F - \sin^2 \theta_N} (1 + \sin^2 \theta_N)$

Saturation changes and density changes - compared $d\rho = \! \left(\rho_{W} - \rho_{CO2} \right) \cdot dS$

Almost proportional...

Conclusions

- Stacked layers of CO2 represents a huge challenge for quantitative saturation estimation from 4D AVO
- Top layer analysis gives reasonable results
- Practically no change in seismic data for saturation changes above 0.3
- A constrained gravity-seismic inversion is used to improve results in the seismic shadow zone
- The LS error between initial (seismically derived saturation changes) and final saturation changes

Acknowledgments

- Statoil and the Sleipner license partners ExxonMobil and Total for permission to use the data
- Anne-Kari Furre and Ola Eiken for support and discussions
- Alistair Harding and Matthew
 Dzieciuch for help and assistance
- Scripps for hosting me and the Norwegian Research Council for financial support

Source: Alnes et al., 201

eismic data sets used: 3D from 2001 and 2008

Testing approximations

The anomaly in the lower right corner..

