Aspect ratio histograms of 3D Ellipsoids and 2D Ellipses*

* Paper submitted to Geophysics
M. Landrø

3D ellipsoids might represent...

- Pore
- Crack
- Grain

Cutting an ellipsoid with a plane

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1 \quad n=\left(n_{1}, n_{2}, n_{3}\right)^{T}
$$

Klein (2012) shows that the cut is an ellipse with half axes

$$
A=\sqrt{\frac{1-d}{\beta_{1}}} \quad B=\sqrt{\frac{1-d}{\beta_{2}}} \quad \Longrightarrow \alpha^{\prime}=\sqrt{\frac{\beta_{2}}{\beta_{1}}} 2 \mathrm{D} \text { aspect ratio }
$$

$$
\beta^{2}-\left[n_{1}^{2}\left(\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)+n_{2}^{2}\left(\frac{1}{a^{2}}+\frac{1}{c^{2}}\right)+n_{3}^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)\right] \beta+\frac{n_{1}^{2}}{b^{2} c^{2}}+\frac{n_{2}^{2}}{a^{2} c^{2}}+\frac{n_{3}^{2}}{a^{2} b^{2}}=0
$$

ecial case 1: two shortest semiaxes, $\mathrm{a}=\mathrm{b}<\mathrm{c}=\boldsymbol{\theta}=\boldsymbol{\alpha} / \boldsymbol{a}$ 3D aspect ratio

$$
\alpha^{\prime}=\frac{\alpha}{\sqrt{1+n_{3}^{2}\left(\alpha^{2}-1\right)}}
$$

Simple relation between 2D and 3D aspect ratio

The histogram of the 2D aspect ratio

$$
\alpha^{\prime}=\frac{\alpha}{\sqrt{1+n_{3}^{2}\left(\alpha^{2}-1\right)}}
$$

Histogram given by the derivative of n_{3} with respect to the 2D aspect ratio:

$$
h\left(\alpha^{\prime}\right) \propto \frac{d n_{3}}{d \alpha^{\prime}}=\frac{\text { const } \cdot \alpha^{2}}{\alpha^{\prime 2} \sqrt{\left(\alpha^{2}-1\right)\left(\alpha^{2}-\alpha^{\prime 2}\right)}}
$$

$$
h\left(\alpha^{\prime}\right)=\frac{N \alpha^{2}}{\alpha^{\prime 2} \sqrt{\left(\alpha^{2}-1\right)\left(\alpha^{2}-\alpha^{\prime 2}\right)}}
$$

$N=$ number of realization

Note: h is independent of $\boldsymbol{n}_{\mathbf{3}}$-distribution

The 3D to 2D transform:

$$
\begin{aligned}
& h_{2 D}\left(\alpha^{\prime}\right)=\int h_{3 D}(\alpha) K\left(\alpha, \alpha^{\prime}\right) d \alpha \\
& K\left(\alpha, \alpha^{\prime}\right)=\frac{\alpha^{2}}{\alpha^{\prime 2} \sqrt{\left(\alpha^{2}-1+\varepsilon\right)\left(\alpha^{2}-\alpha^{\prime 2}+\varepsilon\right)}}
\end{aligned}
$$

The 2D to 3D transform:

$$
\begin{aligned}
& h_{3 D}(\alpha)=\int h_{2 D}\left(\alpha^{\prime}\right) K^{-1}\left(\alpha^{\prime}, \alpha\right) d \alpha^{\prime} \\
& K^{-1}\left(\alpha^{\prime}, \alpha\right)=\frac{\alpha\left(\alpha^{\prime 2}-1\right)}{\alpha^{\prime}\left(\alpha^{2}-1+\varepsilon\right)^{2} \sqrt[2]{\left(\alpha^{2}-\alpha^{\prime 2}+\varepsilon\right)}}
\end{aligned}
$$

Uniform distribution - 10000 realizatio

$$
\begin{aligned}
& \alpha=\alpha_{3 D}=4 \\
& \alpha^{\prime}=\alpha_{2 D}
\end{aligned}
$$

Non-uniform example


```
Normal distribution:
\[
\left\langle n_{1}\right\rangle=\left\langle n_{2}\right\rangle=\left\langle n_{3}\right\rangle=0.47
\]
\[
\sigma=0.33
\]
```


Decreasing the standard deviation yields a worse fit

$$
h\left(\alpha^{\prime}\right)=\frac{N \alpha^{2}}{\alpha^{\prime 2} \sqrt{\left(\alpha^{2}-1\right)\left(\alpha^{2}-\alpha^{\prime 2}\right)}}
$$

Note: This formula is general, not dependent on the assumed distribution -independent of n_{3}

Rudge et al., 2008:

$\alpha=40.0$

Rudge et al., 2008 use spherocylinders and use a random close packing - followed by one single 2D cut.

Comparison with Rudge et al., 2008

Rudge et al., 2008 use spherocylinders and use a random close packing - followed by one single 2D cut

A normal distribution of 3D aspect ratio -forward modeling of 2D aspect

ar, $\mathbf{a}=\mathrm{b}$; what if a, b and c are different?

Shorter axes apsect ratios easier to detect

An attempt to find an equation for

 the general case ($a=1, b$ and c different)$$
h\left(\alpha^{\prime}\right) \propto \frac{d n_{1}}{d \alpha^{\prime}}=\frac{\text { const } \cdot \alpha^{\prime}}{b \sqrt{b^{2}-1-\alpha^{\prime 2}+\varepsilon_{b c} b^{4}}} \quad \varepsilon_{b c}=\frac{1}{3}\left(\frac{1}{b^{2}}-\frac{1}{c^{2}}\right)
$$

Note: Approximate equation - far from exact!

The importance of 3D selection of cuts to reveal the aspect ratio

$$
\begin{gathered}
\left\langle n_{3}^{2}\right\rangle=\sigma^{2}+\mu^{2}=0.09^{2}+0.57^{2}=0.33 \\
\alpha^{\prime}=\frac{\alpha}{\sqrt{1+n_{3}^{2}\left(\alpha^{2}-1\right)}} \\
\alpha^{\prime}=4 / \sqrt{1+0.33 \cdot 15}=1.63
\end{gathered}
$$

The true value of 4 is not observed on the 2D histogram, but the «wrong» value of 1.6

Coupling aspect ratio (3D) to rock physics

$$
\frac{1}{K_{\phi}}=\frac{4(c / a)\left(1-v^{2}\right)}{3 \pi K_{0}(1-2 v)}=\frac{4 \alpha\left(1-v^{2}\right)}{3 \pi K_{0}(1-2 v)} \begin{aligned}
& \text { Penny-shaped pore: } \\
& c \gg \mathrm{a}=\mathrm{b}
\end{aligned}
$$

1Poisson ratio (solid mineral)
KBulk modulus (solid mineral)
α 3D aspect ratio

$$
\frac{1}{K_{d r y}}=\frac{1}{K_{0}}+\frac{\varphi}{K_{\varphi}}
$$

$K_{\text {s }}$ the pore stiffness

Another application: Anisotropy

Discussion and conclusions

- Simple equation to derive 2D aspect ratio histograms from 3D ellipsoids is derived
- 2D to 3D transform of aspect ratio is derived and tested by stochastic simulations
- Using thin sections to estimate 3D aspect ratio might be misleading
- Useful for rock physics applications?

Acknowledgments

- Jon Marius Venstad, Kjetil Eik Haavik, Dave Hale, Mike Batzle, Kenneth Duffaut, Roger Sollie and C. Morency for discussions and comments
- Tor Arne Johansen, Bernardo Moyano for inviting me as an opponent for Bernardo's PhD defense.
- The Norwegian Research Council is acknowledged for financial support to the ROSE consortium at NTNU
- Geophysics Department at Colorado School of Mines for hosting me the autumn semester 2014.

