LECTURE 5

Rune Mittet
Chief Scientist, EMGS Adjunct Professor, NTNU

Uncertainty - Error propagation
Shallow water
Up-down decomposition Anisotropy

Uncertainty - Error propagation

Propagation of uncertainty.

 Error propagationExample with two variables
Taylor to first order:

$$
f(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right)
$$

Or

$$
f(x, y)-f\left(x_{0}, y_{0}\right)=\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}\left(y-y_{0}\right)
$$

Rewrite as:

$$
\delta f(x, y)=\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x} \delta x+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y} \delta y
$$

Variation in function f as a function of variations in parameters x and y.

Have:

$$
\delta f(x, y)=\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x} \delta x+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y} \delta y
$$

Suppose we do N measurements of $f(x, y)$. For the n 'th measurement:

$$
\begin{gathered}
\delta f_{n}=\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x} \delta x_{n}+\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y} \delta y_{n} \\
\delta f_{n}^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \delta x_{n}^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \delta y_{n}^{2}+2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \operatorname{cov}\left(x_{n}, y_{n}\right)
\end{gathered}
$$

Have:

$$
\delta f_{n}^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \delta x_{n}^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \delta y_{n}^{2}+2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \operatorname{cov}\left(x_{n}, y_{n}\right)
$$

If independent variables:

$$
\frac{\sum_{n=1}^{N} \delta f_{n}^{2}}{N}=\left(\frac{\partial f}{\partial x}\right)^{2} \frac{\sum_{n=1}^{N} \delta x_{n}^{2}}{N}+\left(\frac{\partial f}{\partial y}\right)^{2} \frac{\sum_{n=1}^{N} \delta y_{n}^{2}}{N}
$$

In terms of standard deviations:

$$
s_{f}^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} s_{x}^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} s_{y}^{2}
$$

Will use notation of the form: $\quad \delta f^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \delta x^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \delta y^{2}$

Have

$$
\delta f^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \delta x^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \delta y^{2}
$$

The expected uncertainty/error in maesuring f due to uncertainty/error in x and y :

$$
\delta f=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2} \delta x^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \delta y^{2}}
$$

Generalized:

$$
\delta f(\boldsymbol{x})=\sqrt{\sum_{i}\left|\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}\right|^{2}\left|\delta x_{i}\right|^{2}}
$$

Example

Speed trap:

Measured fixed distance and interval time measurement

$$
v=\frac{s_{2}-s_{1}}{t_{2}-t_{1}}=\frac{s}{t}
$$

The distance from A to B is $s=100 \mathrm{~m}$ but there is an uncertainty related to measuring the distance $s: \delta s$

Likewise, there is an uncertainty related to measuring the time it takes to drive from A to $\mathrm{B}: \delta t$

The velocity is:

$$
v(s, t)=\frac{s}{t}
$$

The uncertainty in the velocity measurement is: $\quad \delta v=\sqrt{\left(\frac{\partial v}{\partial s}\right)^{2} \delta s^{2}+\left(\frac{\partial v}{\partial t}\right)^{2} \delta t^{2}}$

$$
\text { Explicitly: } \quad \delta v=\sqrt{\left(\frac{1}{t}\right)^{2} \delta s^{2}+\left(\frac{s}{t^{2}}\right)^{2} \delta t^{2}}
$$

Have

$$
\delta v=\sqrt{\left(\frac{1}{t}\right)^{2} \delta s^{2}+\left(\frac{s}{t^{2}}\right)^{2} \delta t^{2}}
$$

Use $v=\frac{s}{t}$ to obtain:

$$
\frac{\delta v}{v}=\sqrt{\left(\frac{\delta s}{s}\right)^{2}+\left(\frac{\delta t}{t}\right)^{2}}
$$

Suppose the task is to measure velocities up to $110 \mathrm{~km} / \mathrm{h}$ with accuracy $1.1 \mathrm{~km} / \mathrm{h}$ or better.

For the moment, assume perfect timing $(\delta t=0)$. Sufficient accuracy if:

$$
\frac{\delta v}{v} \geq \frac{\delta s}{s}
$$

Have for perfect time measurements:

$$
\frac{\delta s}{s} \leq 0.01
$$

If the distance $s=100 \mathrm{~m}: \delta s \leq 1 \mathrm{~m}$
Assumption: $\delta s \approx 0.1 \mathrm{~m}$ with laser

$$
\frac{\delta v}{v}=\sqrt{\left(\frac{\delta s}{s}\right)^{2}+\left(\frac{\delta t}{t}\right)^{2}} \quad 0.01 \geq \sqrt{(0.001)^{2}+\left(\frac{\delta t}{t}\right)^{2}}
$$

Obtain

$$
\frac{\delta t}{t}<0.01
$$

Good accuracy on distance measurement implies that allmost all potential uncertainty is related to time measurement

Have

$$
\frac{\delta t}{t}<0.01
$$

Small time intervals from A to B will give largest uncertainty. This is for highest velocity.

Have $110 \mathrm{~km} / \mathrm{h} \approx 30 \mathrm{~m} / \mathrm{s}$. Expected shortest time is $t=3.333 \mathrm{~s}$

Acceptable uncertainty in time measurement, δt, is 0.033 s or 33 msec

Manual timing with stopwatch or electronic timing?

Uncertainty in CSEM measurements

Assume observed inline electric field can be approximated by:

$$
E_{x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=G_{x n}^{E J}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right) L J_{n} \alpha+N
$$

$G_{x n}^{E J}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)$: Electric field Green's function. Often named «The Earth's impulse response» Here it serves the role as an ideal response without errors or uncertainty.
$L: \quad$ Length of electric dipole
$J_{n}: \quad$ Strength of transmitted current
$\alpha: \quad$ Receiver calibration factor, nominal value is 1.0
$N: \quad$ Additive noise. Can be receiver self noise, MT noise, swell noise, motion noise, ...

Uncertainty

Receiver:

- Position
- Direction
- Calibration
- Timing
- Self noise
- Motion noise - turbulence
- Swell noise
- MT noise (Can be estimated/partly removed)

Transmitter:

- Front electrode position - Aft electrode position $]$.
- Current measurement
- Timing

Have

$$
E_{x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=G_{x n}^{E J}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right) L J_{n} \alpha+N
$$

For simplicity of derivation we assume a plane layer earth $\boldsymbol{x}=\boldsymbol{x}_{r}-\boldsymbol{x}_{s}$

$$
E_{x}(\boldsymbol{x})=G_{x n}^{E J}(\boldsymbol{x}) L J_{n} \alpha+N
$$

For the source components

$$
\begin{aligned}
J_{x} & =J \cos (\varphi) \cos (\theta) \\
J_{y} & =J \sin (\varphi) \cos (\theta) \\
J_{z} & =J \sin (\theta)
\end{aligned}
$$

Nominal $\varphi=0, \quad \theta=0$

Perfect inline transmitter give: $J_{x}=J, \quad J_{y}=0, \quad J_{z}=0$

$$
E_{x}(\boldsymbol{x}) \rightarrow E_{x}(\boldsymbol{p}) \quad \boldsymbol{p}=[\boldsymbol{x}, \alpha, J, L, \theta, \varphi, N]^{T}
$$

Have derived

$$
\delta f(\boldsymbol{x})=\sqrt{\sum_{i}\left|\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}\right|^{2}\left|\delta x_{i}\right|^{2}}
$$

For inline electromagnetic field:

$$
\begin{aligned}
& \delta E_{x}(\boldsymbol{p})=\sqrt{\sum_{i}\left|\frac{\partial E_{x}(\boldsymbol{p})}{\partial p_{i}}\right|^{2}\left|\delta p_{i}\right|^{2}} \\
& E_{x}(\boldsymbol{p})=G_{x n}^{E J}(\boldsymbol{x}) L J_{n} \alpha+N \\
& \boldsymbol{p}=[\boldsymbol{x}, \alpha, J, L, \theta, \varphi, N]^{T}
\end{aligned}
$$

For simplicity of notation: $D=L J \alpha$

Next step is to carry out calculation of partial derivatives with respect to parameter vector

$$
E_{x}(\boldsymbol{p})=G_{x n}^{E J}(\boldsymbol{x}) L J_{n} \alpha+N \quad \boldsymbol{p}=[\boldsymbol{x}, \alpha, J, L, \theta, \varphi, N]^{T} \quad D=L J \alpha
$$

Spatial coordinates:

$$
\begin{aligned}
& \partial_{x} E_{x}(\boldsymbol{p})=\partial_{x} G_{x x}^{E J}(\boldsymbol{x}) D \\
& \partial_{y} E_{x}(\boldsymbol{p})=0 \\
& \partial_{z} E_{x}(\boldsymbol{p})=\partial_{z} G_{x x}^{E J}(\boldsymbol{x}) D
\end{aligned}
$$

Directional coordinates:

$$
J_{x}=J \cos (\varphi) \cos (\theta)
$$

$$
\begin{array}{ll}
\partial_{\varphi} E_{x}(\boldsymbol{p})=0 & J_{y}=J \sin (\varphi) \cos (\theta) \quad\left(G_{x y}=0\right) \\
& J_{z}=J \sin (\theta) \\
\partial_{\theta} E_{x}(\boldsymbol{p})=G_{x z}^{E J}(\boldsymbol{x}) D &
\end{array}
$$

Next step is to carry out calculation of partial derivatives with respect to parameter vector

$$
E_{x}(\boldsymbol{p})=G_{x n}^{E J}(\boldsymbol{x}) L J_{n} \alpha+N \quad \boldsymbol{p}=[\boldsymbol{x}, \alpha, J, L, \theta, \varphi, N]^{T} \quad D=L J \alpha
$$

Dipole moment-receiver calibration:

$$
\begin{aligned}
\partial_{L} E_{x}(\boldsymbol{p}) & =G_{x x}^{E J}(\boldsymbol{x}) D \frac{1}{L} \\
\partial_{J} E_{x}(\boldsymbol{p}) & =G_{x x}^{E J}(\boldsymbol{x}) D \frac{1}{J} \\
\partial_{\alpha} E_{x}(\boldsymbol{p}) & =G_{x x}^{E J}(\boldsymbol{x}) D \frac{1}{\alpha}
\end{aligned}
$$

Additive noise:

$$
\partial_{N} E_{x}(\boldsymbol{p})=1
$$

Partial uncertainties

$$
\begin{array}{ll}
\partial_{x} E_{x}(\boldsymbol{p})=\partial_{x} G_{x x}^{E J}(\boldsymbol{x}) D \longrightarrow \delta E_{x}(\mathrm{X})=\left|\partial_{x} G_{x x}^{E J}(\boldsymbol{x}) D \delta x\right| \\
\partial_{z} E_{x}(\boldsymbol{p})=\partial_{z} G_{x x}^{E J}(\boldsymbol{x}) D \longrightarrow \delta E_{x}(Z)=\left|\partial_{z} G_{x x}^{E J}(\boldsymbol{x}) D \delta z\right|
\end{array}
$$

$$
\left.\begin{array}{l}
\partial_{L} E_{x}(\boldsymbol{p})=G_{x x}^{E J}(\boldsymbol{x}) D \frac{1}{L} \\
\partial_{J} E_{x}(\boldsymbol{p})=G_{x x}^{E J}(\boldsymbol{x}) D \frac{1}{J} \\
\partial_{\alpha} E_{x}(\boldsymbol{p})=G_{x x}^{E J}(\boldsymbol{x}) D \frac{1}{\alpha}
\end{array}\right] \quad \delta E_{x}(\mathrm{C})=\left|G_{x x}^{E J}(\boldsymbol{x}) D\right| \sqrt{(}
$$

$$
\delta E_{x}(\mathrm{C})=\left|G_{x x}^{E J}(\boldsymbol{x}) D\right| \sqrt{\left(\frac{\delta L}{L}\right)^{2}+\left(\frac{\delta J}{J}\right)^{2}+\left(\frac{\delta \alpha}{\alpha}\right)^{2}}
$$

Have

$$
\begin{aligned}
& \delta E_{x}(\mathrm{X})=\left|\partial_{x} G_{x x}^{E J}(\boldsymbol{x}) D \delta x\right| \\
& \delta E_{x}(\mathrm{Z})=\left|\partial_{z} G_{x x}^{E J}(\boldsymbol{x}) D \delta z\right| \\
& \delta E_{x}(\mathrm{C})=\left|G_{x x}^{E J}(\boldsymbol{x}) D\right| \sqrt{\left(\frac{\delta L}{L}\right)^{2}+\left(\frac{\delta J}{J}\right)^{2}+\left(\frac{\delta \alpha}{\alpha}\right)^{2}} \\
& \delta E_{x}(\theta)=\left|G_{x z}^{E J}(\boldsymbol{x}) D \delta \theta\right|
\end{aligned}
$$

Collect all terms that scales with Green's functions and dipole moment:

$$
\left|\delta E_{x}(\mathrm{M})\right|^{2}=\left|\delta E_{x}(\mathrm{X})\right|^{2}+\left|\delta E_{x}(\mathrm{Z})\right|^{2}+\left|\delta E_{x}(\mathrm{C})\right|^{2}+\left|\delta E_{x}(\theta)\right|^{2}
$$

The additive term:

$$
\delta E_{x}(\mathrm{~N})=|\Delta N|
$$

The total uncertainty:

$$
\delta E_{x}(\boldsymbol{p})=\sqrt{\sum_{i}\left|\frac{\partial E_{x}(\boldsymbol{p})}{\partial p_{i}}\right|^{2}\left|\delta p_{i}\right|^{2}} \longrightarrow \quad \delta E_{x}(\boldsymbol{p})=\sqrt{\left|\delta E_{x}(\mathrm{M})\right|^{2}+\left|\delta E_{x}(\mathrm{~N})\right|^{2}}
$$

Plot color coding

$$
\begin{aligned}
& \delta E_{x}(\mathrm{X})=\left|\partial_{x} G_{x x}^{E J}(\boldsymbol{x}) D \delta x\right| \\
& \delta E_{x}(\mathrm{Z})=\left|\partial_{z} G_{x x}^{E J}(\boldsymbol{x}) D \delta z\right| \\
& \delta E_{x}(\mathrm{C})=\left|G_{x x}^{E J}(\boldsymbol{x}) D\right| \sqrt{\left(\frac{\delta L}{L}\right)^{2}+\left(\frac{\delta J}{J}\right)^{2}+\left(\frac{\delta \alpha}{\alpha}\right)^{2}}- \\
& \delta E_{x}(\theta)=\left|G_{x Z}^{E J}(\boldsymbol{x}) D \delta \theta\right| \\
& \delta E_{x}(\mathrm{~N})=|\Delta N| \\
& \delta E_{x}(\boldsymbol{p})=\sqrt{\left|\delta E_{x}(\mathrm{M})\right|^{2}+\left|\delta E_{x}(\mathrm{~N})\right|^{2}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

Scattered fields

Misfit in first iteration:

$$
\Delta E_{x}^{0}(\boldsymbol{p})=\left|E_{x}^{O b s}(\boldsymbol{p})-E_{x}^{0}(\boldsymbol{x}, \omega)\right|
$$

Assume that 67 percent (2/3) of transverse resistance recovered at iteration n :

$$
\Delta E_{x}^{n}(\boldsymbol{p})=\left|E_{x}^{O b s}(\boldsymbol{p})-E_{x}^{n}(\boldsymbol{x}, \omega)\right|
$$

True model
Start model
Partially recovered model after n iterations

Inversion

L1 inversion data misfit kernel:

$$
\Psi^{n}(\boldsymbol{p})=\frac{\Delta E_{x}^{n}(\boldsymbol{p})}{\delta E_{x}(\boldsymbol{p})}
$$

Inspect ratio of residual misfit field to uncertainty:
Hard to extract more resistivity information if residual data misfit is of same magnitude as uncertainty. Critical value for Ψ is 1 . Further iterations make sense if Ψ larger than unity

Usually L2 inversion data misfit kernels used:

$$
\varepsilon=\sum_{\text {observations }}\left(\frac{\Delta E_{x}^{n}}{\delta E_{x}}\right)^{2}
$$

Resistivity model

$\mathrm{f}=0.25 \mathrm{~Hz}$					
ρ_{V}	ρ_{H}		Resistivity	ρ_{V}	ρ_{H}
0.3125	0.3125		2000 m	0.3125	0.3125
3.0	1.5		$2000 \mathrm{~m}-5000 \mathrm{~m}$	3.0	1.5
3.0	1.5		$\square 50 \mathrm{~m}$	50.0	50.0
4.0	2.0	\bigcirc		4.0	2.0

Examples

Depth:2000 m Cur:1000 A Dx:15.0 m Dz:5.0 m Dcal:0.01 Dcur:0.02 Gr:A BI:Dx Cy:Dz Gy:TIt R\%:67.0

Examples

Depth:2000 m Cur:1000 A Dx:15.0 m Dz:5.0 m Dcal:0.01 Dcur:0.02 Gr:A BI:Dx Cy:Dz Gy:TIt R\%:67.0

Examples

Depth:2000 m Cur:1000 A Dx:15.0 m Dz:5.0 m Dcal:0.01 Dcur:0.02 Gr:A BI:Dx Cy:Dz Gy:TIt R\%:67.0

Examples

Depth:2000 m Cur:1000 A Dx:15.0 m Dz:5.0 m Dcal:0.01 Dcur:0.02 Gr:A BI:Dx Cy:Dz Gy:TIt R\%:67.0

Examples

Depth:2000 m Cur:1000 A Dx:15.0 m Dz:5.0 m Dcal:0.01 Dcur:0.02 Gr:A BI:Dx Cy:Dz Gy:TIt R\%:67.0

For

$$
\delta E_{x}(\mathrm{C})=\left|G_{x x}^{E J}(\boldsymbol{x}) D\right| \sqrt{\left(\frac{\delta L}{L}\right)^{2}+\left(\frac{\delta J}{J}\right)^{2}+\left(\frac{\delta \alpha}{\alpha}\right)^{2}}
$$

Assume in the following:

$$
\begin{aligned}
& \frac{\delta L}{L}=\frac{\delta J}{J}=\frac{\delta \alpha}{\alpha} \\
& \delta E_{x}(\mathrm{C})=\left|G_{x x}^{E J}(\boldsymbol{x}) D\right| \frac{\delta A}{A}
\end{aligned}
$$

For example

$$
\frac{\delta A}{A}=\sqrt{3} \frac{\delta L}{L} \approx 1.7 \frac{\delta L}{L}
$$

Noise: $\delta E_{x}(\mathrm{~N})$
Misfit: $\Delta E_{x}(\boldsymbol{p})$
Inline: $\delta E_{x}(\mathrm{X})$
Depth: $\delta E_{x}(\mathrm{Z})$
Calibration: $\delta E_{x}(\mathrm{C})$
Tilt: $\delta E_{x}(\theta)$
Total: $\delta E_{\chi}(\boldsymbol{p})$

Target depth:1250 m Current:1000 A Cal:0.017 R\%:67.0

$$
\begin{aligned}
& \Delta E_{x}^{0}(\boldsymbol{p})=\left|E_{x}^{o b s}(\boldsymbol{p})-E_{x}^{0}(\boldsymbol{x}, \omega)\right| \\
& \Delta E_{x}^{n}(\boldsymbol{p})=\left|E_{x}^{O b s}(\boldsymbol{p})-E_{x}^{n}(\boldsymbol{x}, \omega)\right| \\
& \delta E_{x}(\boldsymbol{p})=\sqrt{\left|\delta E_{x}(\mathrm{M})\right|^{2}+\left|\delta E_{x}(\mathrm{~N})\right|^{2}}
\end{aligned}
$$

Typical accuracy as of 2010

Target down

Typical accuracy as of 2010

$$
\begin{aligned}
& \delta x=15 \mathrm{~m} \\
& \delta z=5 \mathrm{~m} \\
& \delta \theta=1^{\circ}
\end{aligned}
$$

Target down

$$
\begin{gathered}
\delta x=15 \mathrm{~m} \\
\delta z=5 \mathrm{~m} \\
\delta \theta=1^{\circ}
\end{gathered}
$$

Receiver noise $10^{-11} \mathrm{~V} / \mathrm{m}$

Receiver noise $10^{-11} \mathrm{~V} / \mathrm{m}$
Transmitter current 10 kA
Target depth:3500 m Current:10000 A Cal:0.005 R\%:67.0

Target fixed
Target depth:3500 m Current:10000 A Cal:0.005 R\%:67.0

$$
\begin{aligned}
\delta x & =15 \mathrm{~m} \\
\delta z & =5 \mathrm{~m} \\
\delta \theta & =1^{\circ}
\end{aligned}
$$

Receiver noise $10^{-11} \mathrm{~V} / \mathrm{m}$
Transmitter current 10 kA
Better calibration and δL

Receiver noise $10^{-11} \mathrm{~V} / \mathrm{m}$
Transmitter current 10 kA
Better calibration and δL
Better navigation $x \& z$

Target down

$$
\begin{gathered}
\delta x=5 \mathrm{~m} \\
\delta z=2 \mathrm{~m} \\
\delta \theta=0.4^{\circ}
\end{gathered}
$$

Receiver noise $10^{-11} \mathrm{~V} / \mathrm{m}$
Transmitter current 10 kA
Better calibration and δL
Better navigation x \& z
Better navigation θ

Increased transverse resistance
Target down
$\delta x=5 \mathrm{~m}$
$\delta z=2 \mathrm{~m}$
$\delta \theta=0.4^{\circ}$
Receiver noise $10^{-11} \mathrm{~V} / \mathrm{m}$
Transmitter current 10 kA
Better calibration and δL
Better navigation x \& z
Better navigation θ

Shallow water - 40 m

Problem is MT - swell - motion noise

$$
\begin{gathered}
\delta x=1 \mathrm{~m} \\
\delta z=1 \mathrm{~m} \\
\delta \theta=0^{\circ}
\end{gathered}
$$

Receiver noise $10^{-9} \mathrm{~V} / \mathrm{m}$

Have

$$
\begin{aligned}
\delta E_{x}(\boldsymbol{p}) & =\sqrt{\left|\delta E_{x}(\mathrm{M})\right|^{2}+\left|\delta E_{x}(\mathrm{~N})\right|^{2}} \\
\left|\delta E_{x}(\mathrm{M})\right|^{2} & =\left|\delta E_{x}(\mathrm{X})\right|^{2}+\left|\delta E_{x}(\mathrm{Z})\right|^{2}+\left|\delta E_{x}(\mathrm{C})\right|^{2}+\left|\delta E_{x}(\theta)\right|^{2} \\
\Delta E_{x}^{0}(\boldsymbol{p}) & =\left|E_{x}^{O b s}(\boldsymbol{p})-E_{x}^{0}(\boldsymbol{x}, \omega)\right|
\end{aligned}
$$

Let x here mean source-receiver offset

$$
\gamma(x)=\frac{\delta E_{x}(x \mid \mathrm{M})}{E_{x}^{O b s}(x)}
$$

Can write:

$$
\delta E_{x}(x)=\sqrt{\left|\gamma(x) E_{x}^{O b s}(x)\right|^{2}+\Delta N^{2}}
$$

How does γ behave as a function of source-receiver offset?

Quick and dirty estimate of uncertainty:

$$
\delta E_{x}(x) \approx \sqrt{\gamma^{2}\left|E_{x}^{O b s}(x)\right|^{2}+\Delta N^{2}}
$$

Even dirtier estimate of uncertainty:

$$
\delta E_{x}(x) \approx \gamma\left|E_{x}^{O b s}(x)\right|+\Delta N
$$

Frequency vs. Offset

In order to find the best fitting range of frequencies for a survey it is important to find a waveform with frequencies at and around the peak sensitivity for a given target.

At the same time one should keep in mind that different frequencies have different penetration and resolution.

Shallow water

Air		
Water	$40-2000 \mathrm{~m}$	0.3 Ohm-m
Formation	1000 m	$20 \mathrm{~mm}-\mathrm{m}$
Resistor	50 m	$50 \mathrm{Ohm}-\mathrm{m}$
Formation	$20 \mathrm{hm}-\mathrm{m}$	
All examples are for 0.25 Hz		
Results not particular for that frequency		

Formation

Full waveform modeling of the scattered field from a thin resistor

$$
\Delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}, \mathrm{~A}\right)-E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}, \mathrm{~B}\right)
$$

$$
E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}, \mathrm{~A}\right)=E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}, \mathrm{~B}\right)+\Delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)
$$

Airwaves and Scattered fields

Airwaves and Scattered fields

Shallow water CSEM very difficult if scattered field same amplitude for all waterdepths

The amplitude of the scattered field increase significantly in waterdepths less than 300 m

Normalized Scattered fields

Scattered fields normalized on the 2000 m waterdepth case

Resistor burial depth 1000 m

Resistor burial depth 3000 m

Enhanced scattered-field effect is not restricted to a particular burial depth or frequency

Airwaves and Scattered fields

Scattered field of same magnitude as background field for a fairly large offset interval.

Marine CSEM in

shallow water feasible.

Magnitude of airwave increase as waterdepth is reduced
The response from a thin resistive layer increase as waterdepth is reduced
The increase in the response from a thin resistive layer is sufficiently strong to make marine CSEM in shallow water feasible

Mittet and Morten 2012:
Error propagation analysis to estimate uncertainty in observation

$$
\begin{aligned}
& E_{x x}^{O b s}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s} ; \mathrm{L}, \mathrm{~J}, \beta, N, \ldots .\right) \approx G_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\llcorner\mathrm{LJ}+\mathrm{N} \\
& \delta E_{x x}^{O b s}(\boldsymbol{p})=\sqrt{\sum_{i}\left|\frac{\partial E_{x x}^{O b s}(\boldsymbol{p})}{\partial p_{i}}\right|^{2}\left|\Delta p_{i}\right|^{2}}
\end{aligned}
$$

Contributions to uncertainty are both multiplicative and additive
For model used here we find that multplicative contributions approximately constant with offset (Offset > 2 km)

Simplified model for the uncertainty in the observed data:
$\delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=\sqrt{\alpha^{2}\left|E_{x x}^{O b s}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\right|^{2}+\eta^{2}}$

Scattered (\sim misfit) field from full waveform modeling:

$$
\Delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}, \mathrm{~A}\right)-E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}, \mathrm{~B}\right)
$$

Uncertainty in the observed field:

$$
\delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=\sqrt{\alpha^{2}\left|E_{x x}^{O b s}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\right|^{2}+\eta^{2}}
$$

L1 inversion kernel at first iteration:

$$
\Psi\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=\frac{\left|\Delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\right|}{\left|\delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\right|}
$$

L2 inversion kernel at first iteration:

$$
\Psi\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=\frac{\left|\Delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\right|^{2}}{\left|\delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\right|^{2}} \quad \text { (Tarantola, 1984) }
$$

Noise models

$$
\delta E_{x x}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)=\sqrt{\left.\alpha^{2}\left|E_{x x}^{O b s}\left(\boldsymbol{x}_{r} \mid \boldsymbol{x}_{s}\right)\right|^{2} \mid\right)+\eta^{2}}
$$

Based on error propagation analysis

$$
\alpha=0.03
$$

Based on real data

$$
\begin{aligned}
& \eta(2000 \mathrm{~m})=5 \times 10^{-16} \frac{\mathrm{~V}}{\mathrm{Am}^{2}} \\
& \eta(300 \mathrm{~m})=3 \times 10^{-15} \frac{\mathrm{~V}}{\mathrm{Am}^{2}} \\
& \eta(100 \mathrm{~m})=6 \times 10^{-15} \frac{\mathrm{~V}}{\mathrm{Am}^{2}} \\
& \eta(40 \mathrm{~m})=1.5 \times 10^{-14} \frac{\mathrm{~V}}{\mathrm{Am}^{2}}
\end{aligned}
$$

L1 kernels

Airwaves fields

Airwaves and Scattered fields

L1 kernels

From 2000 m-400 m: Increase in airwave and additive noise give reduced sensitivity

From 400 m-40 m : Increase in scattered field balance the airwave effect

40 m
100 m
300 m
500 m
800 m
1000 m
1500 m
2000 m

Up-down decomposition

Before up-down decomposition

After up-down decomposition

The purpose of U-D decomposition is to reduce the contribution from «large amplitude» downgoing field components like the airwave and MT fields

After decomposition further processing is performed on the upgoing field that has interacted with the subsurface

Maxwell equations for 1D MT

$$
\left[\begin{array}{c}
J_{x}^{s}+\sigma E_{x} \\
J_{y}^{s}+\sigma E_{y} \\
0+\sigma E_{z}
\end{array}\right]=\left[\begin{array}{c}
-\partial_{z} H_{y} \\
\partial_{z} H_{x} \\
0
\end{array}\right] \quad\left[\begin{array}{c}
i \omega \mu_{0} H_{x} \\
i \omega \mu_{0} H_{y} \\
i \omega \mu_{0} H_{z}
\end{array}\right]=\left[\begin{array}{c}
-\partial_{z} E_{y} \\
\partial_{z} E_{x} \\
0
\end{array}\right]
$$

Obtain two sets of equations that describe two different polarizations:
$\partial_{z} H_{y}+\sigma E_{x}=-J_{x}^{S}$
$\partial_{z} E_{x}-i \omega \mu_{0} H_{y}=0$

$$
\begin{gathered}
\partial_{z} H_{x}+\sigma E_{y}=-J_{y}^{S} \\
\partial_{z} E_{y}+i \omega \mu_{0} H_{x}=0
\end{gathered}
$$

Equations for both polarizations :

$$
\partial_{z}^{2} E_{x}+i \omega \mu_{0} \sigma E_{x}=-\mathrm{i} \omega \mu_{0} J_{x}^{s} \quad \partial_{z}^{2} E_{y}+\mathrm{i} \omega \mu_{0} \sigma E_{y}=-\mathrm{i} \omega \mu_{0} J_{y}^{s}
$$

Sufficient to concentrate on x-polarization to understand the physics.

$$
\partial_{z} E_{x}-i \omega \mu_{0} H_{y}=0
$$

$$
k_{\omega}^{2}=i \omega \mu_{0} \sigma
$$

$$
E_{x}^{D}(z, \omega)=E_{x}\left(z_{a}, \omega\right) e^{i k_{\omega}\left(z-z_{a}\right)} \quad E_{x}^{U}(z, \omega)=E_{x}\left(z_{b}, \omega\right) e^{i k_{\omega}\left(z_{b}-z\right)} \quad k_{\omega}=\sqrt{i \omega \mu_{0} \sigma}
$$

$$
\partial_{z} E_{x}-i \omega \mu_{0} H_{y}=0
$$

$$
k_{\omega}^{2}=i \omega \mu_{0} \sigma
$$

$$
E_{x}^{D}(z, \omega)=E_{x}\left(z_{a}, \omega\right) e^{i k_{\omega}\left(z-z_{a}\right)} \quad E_{x}^{U}(z, \omega)=E_{x}\left(z_{b}, \omega\right) e^{i k_{\omega}\left(z_{b}-z\right)} \quad k_{\omega}=\sqrt{i \omega \mu_{0} \sigma}
$$

$$
\partial_{z} E_{x}-i \omega \mu_{0} H_{y}=0
$$

$$
k_{\omega}^{2}=i \omega \mu_{0} \sigma
$$

$$
E_{x}^{D}(z, \omega)=E_{x}\left(z_{a}, \omega\right) e^{i k_{\omega}\left(z-z_{a}\right)} \quad E_{x}^{U}(z, \omega)=E_{x}\left(z_{b}, \omega\right) e^{i k_{\omega}\left(z_{b}-z\right)} \quad k_{\omega}=\sqrt{i \omega \mu_{0} \sigma}
$$

$$
\begin{array}{llll}
f z_{a} & E_{x}^{D}(z, \omega) & \text { Have in general: } \quad \partial_{z} E_{x}=i \omega \mu_{0} H_{y} \\
z & z_{b} & \text { Assume downgoing field only at } z: \\
& E_{x}^{U}(z, \omega) & \partial_{z} E_{x}^{D}(z, \omega)=i \omega \mu_{0} H_{y}^{D}(z, \omega) \\
& E_{x}^{D}(z, \omega)=\frac{\omega \mu_{0}}{k_{\omega}} H_{y}^{D}(z, \omega) \\
& E_{x}^{D}(z, \omega)=\frac{\omega \mu_{0}}{\sqrt{i \omega \mu_{0} \sigma}} H_{y}^{D}(z, \omega) \\
& & E_{x}^{D}(z, \omega)=Z H_{y}^{D}(z, \omega)
\end{array}
$$

$$
\partial_{z} E_{x}-i \omega \mu_{0} H_{y}=0
$$

$$
k_{\omega}^{2}=i \omega \mu_{0} \sigma
$$

$$
E_{x}^{D}(z, \omega)=E_{x}\left(z_{a}, \omega\right) e^{i k_{\omega}\left(z-z_{a}\right)} \quad E_{x}^{U}(z, \omega)=E_{x}\left(z_{b}, \omega\right) e^{i k_{\omega}\left(z_{b}-z\right)} \quad k_{\omega}=\sqrt{i \omega \mu_{0} \sigma}
$$

$$
\begin{array}{l|ll}
f z_{a} & E_{x}^{D}(z, \omega) & \text { Have in general: } \quad \partial_{z} E_{x}=i \omega \mu_{0} H_{y} \\
z & z_{b} & \text { Assume upgoing field only at } z: \\
& E_{x}^{U}(z, \omega) & \partial_{z} E_{x}^{U}(z, \omega)=i \omega \mu_{0} H_{y}^{U}(z, \omega) \\
& E_{x}^{U}(z, \omega)=-\frac{\omega \mu_{0}}{k_{\omega}} H_{y}^{U}(z, \omega) \\
& & E_{x}^{U}(z, \omega)=-\frac{\omega \mu_{0}}{\sqrt{i \omega \mu_{0} \sigma}} H_{y}^{U}(z, \omega) \\
& & E_{x}^{U}(z, \omega)=-Z H_{y}^{U}(z, \omega)
\end{array}
$$

Characteristic impedance:

$$
\begin{aligned}
& \mathrm{Z}=\frac{\omega \mu_{0}}{\sqrt{i \omega \mu_{0} \sigma}} \\
& \mathrm{Z}=\sqrt{-i \omega \mu_{0} \rho}
\end{aligned}
$$

Characteristic impedance is a medium property and is completely determined by the medium resistivity (or conductivity).

Must not be confused by the expression for field impedance $Z_{x y}$ used in MT processing:

$$
Z_{x y}=\frac{E_{x}}{H_{y}}
$$

We measure the total fields:

$$
E_{x}(z, \omega)=E_{x}^{D}(z, \omega)+E_{x}^{U}(z, \omega)
$$

$$
H_{y}(z, \omega)=H_{y}^{D}(z, \omega)+H_{y}^{U}(z, \omega)
$$

$$
\begin{gathered}
E_{x}^{D}(z, \omega)=Z H_{y}^{D}(z, \omega) \\
E_{x}^{U}(z, \omega)=-Z H_{y}^{U}(z, \omega) \\
E_{x}^{D}(z, \omega)=Z H_{y}^{D}(z, \omega) \longrightarrow \quad E_{x}(z, \omega)-E_{x}^{U}(z, \omega)=Z H_{y}(z, \omega)-Z H_{y}^{U}(z, \omega) \\
E_{x}(z, \omega)-E_{x}^{U}(z, \omega)=Z H_{y}(z, \omega)+E_{x}^{U}(z, \omega)
\end{gathered}
$$

Upgoing and downgoing fields are calculated from the measured fields:

$$
E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z H_{y}(z, \omega)\right]
$$

$$
E_{x}^{D}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)+Z H_{y}(z, \omega)\right]
$$

For vertically traveling field:

$$
E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z H_{y}(z, \omega)\right]
$$

General solution:

$$
E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z \frac{\left(k_{x} k_{y} H_{x}(z, \omega)+\left(k_{\omega}^{2}-k_{x}^{2}\right) H_{y}(z, \omega)\right)}{k_{\omega} \sqrt{k_{\omega}^{2}-k_{x}^{2}-k_{y}^{2}}}\right]
$$

Vertical propagation $k_{x}=k_{y}=0$

Practical Up-Down decomposition is performed with: $\quad E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z H_{y}(z, \omega)\right]$

Electric fields paralell to an interface are contineous over interface.

Current normal to interfaces is contineous

Magnetic fields continous if non-magnetic material

Electric fields paralell to an interface are contineous over interface.
Magnetic fields paralell to an interface are contieous over interface.

Separation above and below seabed

$$
E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z \frac{\left(k_{x} k_{y} H_{x}(z, \omega)+\left(k_{\omega}^{2}-k_{x}^{2}\right) H_{y}(z, \omega)\right)}{k_{\omega} \sqrt{k_{\omega}^{2}-k_{x}^{2}-k_{y}^{2}}}\right]
$$

$$
E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z_{w} H_{y}(z, \omega)\right]
$$

Up/Down separation

Up/Down separation

Up/Down separation

$$
\begin{array}{|c|}
\hline E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z_{w} H_{y}(z, \omega)\right] \\
\hline \hline E_{x}^{U}(z, \omega)=\frac{1}{2}\left[E_{x}(z, \omega)-Z_{f} H_{y}(z, \omega)\right] \\
\hline
\end{array}
$$

Up/Down separation

Recorded field	
Modeled upgoing	
Calculated from measured field 3D	
	Calculated from measured field 1D above Calculated from recorded field 1D below

Up/Down separation

Up/Down separation

Doing Up-Down decomposition is not the same as doing a deep water experiment
Internal multiples in waterlayer is not removed.

Electric field amplitudes

Phase

Electric field amplitudes

Phase

Distance (km)
Horizontal resistivity model

Anisotropy

Electrical anisotropy

Resistivity within a formation is different in the vertical and horizontal directions.

Reasons for this:
Lithology, layering, grain orientation
Fractures
Diagenesis

Anisotropy Factor= ρ_{v} / ρ_{h} Values range from basin to basin and stratigraphic intervals.

Electrical anisotropy

A formation is said to be electrically anisotropic if its conductivity is direction dependendent.

Principle causes of anisotropy are: Lamination and bedding, grain shape and alignment, and fracturing

IV is typical for a formation with horizontal bedding and grain alignment.

General anisotropy is typical for a dipping formation.

In CSEM, it is most common to work with a TIV model.
Good to know

- TIV stands for "transverse isotropy with respect to a vertical axis of rotational symmetry".
- In vertical wells, resistivity IG

Electrical ansiotropy and resolution

- CSEM is a low-frequency technique, so we cannot hope to resolve conductivity variations on a scale similar to well log resistivity measurements.
- All we can expect is to measure a bulk conductivity of a rock slab with dimensions on the order of several meters.
- The bulk conductivity is, however, determined by the fine-scale structure and constituents of the slab.
- Material averaging laws dictate that the bulk conductivity is anisotropic even if the constituents are isotropic.

Material averaging for a formation with horizontal bedding

Good to know

The effective vertical resistivity is typically higher than the effective horizontal resistivity.
The ratio $\lambda=\rho_{v} / \rho_{h}$ is called anisotropy factor.

$$
\rho_{v}=\frac{1}{N} \sum_{i} \rho_{v, i}
$$

"arithmetic" average of vertical resistivity

$$
\frac{1}{\rho_{h}}=\frac{1}{N} \sum_{i} \frac{1}{\rho_{h, i}}
$$

"harmonic" average of horizontal resistivity

Emphasis on beds with relatively high resistivity

Emphasis on beds with relatively high conductivity

ше emgs

SPOT THE DIFFERENCE

Thank you

