LECTURE 2

Rune Mittet
Chief Scientist, EMGS Adjunct Professor, NTNU

Data representation - Amplitude and phase Preprocessing

Data representation Amplitude and phase

$$
R=c t
$$

Distance R

Distance R

Distance

Distance

Distance

Fourier transforms

Contineous:

$$
F(\omega)=\int_{-\infty}^{\infty} d t F(t) e^{i \omega t} \quad F(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega F(\omega) e^{-i \omega t}
$$

Suppose electric field behaves as broadband wave:

$$
E_{x}\left(\boldsymbol{x}_{r}, t \mid \boldsymbol{x}_{s}\right)=\frac{\delta\left(t-\frac{\left|x_{r}-x_{s}\right|}{c}\right)}{4 \pi\left|x_{r}-x_{s}\right|}=\frac{\delta\left(t-\frac{R}{c}\right)}{4 \pi R} \quad R=\left|\boldsymbol{x}_{r}-\boldsymbol{x}_{s}\right|
$$

One of many representations of the Dirac delta distribution:

$$
\delta(t-\tau)=\frac{1}{\sqrt{\pi}} \lim _{\varepsilon \rightarrow 0} \frac{1}{\sqrt{\varepsilon}} e^{-\frac{(t-\tau)^{2}}{\varepsilon}}
$$

Contineous:

$$
\begin{array}{ll}
F(\omega)=\int_{-\infty}^{\infty} d t f(t) e^{i \omega t} & f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega F(\omega) e^{-i \omega t} \\
E_{x}(R, t)=\frac{\delta\left(t-\frac{R}{c}\right)}{4 \pi R} & R=\left|\boldsymbol{x}_{r}-\boldsymbol{x}_{s}\right|
\end{array}
$$

Fourier transformed from time to frequency: $E_{x}(R, \omega)=\frac{e^{i \frac{\omega}{c} R}}{4 \pi R}$

$$
\begin{array}{ll}
E_{x}(R, \omega)=A(R) e^{i \varphi(R)} & \\
A(R)=\frac{1}{4 \pi R} & \varphi(R)=\frac{\omega}{c} R
\end{array}
$$

Gradient of phase curve reduced with increased velocity for fixed frequency

$$
E_{x}(R, \omega)=\frac{e^{i \frac{\omega}{c} R}}{4 \pi R} \quad E_{x}(R, \omega)=A(R) e^{i \varphi(R)}
$$

Tougth experiment: What if strong absorption present?

$$
\begin{array}{ll}
E_{x}(R, \omega)=\frac{e^{i \frac{\omega}{c} R}}{4 \pi R} & E_{x}(R, \omega)=\frac{e^{-\frac{\omega}{c} R} e^{i \frac{\omega_{R}}{c} R}}{4 \pi R} \\
E_{x}(R, \omega)=A(R) e^{i \varphi(R)} & A(R)=\frac{e^{-\frac{\omega}{c} R}}{4 \pi R} \quad \varphi(R)=\frac{\omega}{c} R
\end{array}
$$

$$
\varphi(R)=\frac{\omega}{c} R
$$

Marine CSEM: Log scale is used for data plots
Strong absorption have the effect that amplitudes drop by several orders of magnitude over a 10 km offset range

Phase is normally not unwrapped when plotting
Phase is normally extracted with the «atan2» function
Phase is on the interval $[-\pi, \pi]$ in radians or on the interval $[-180,180]$ in degrees

A phase function with increasing offset x will grow from initial value to 180 degrees, drop to -180 degrees before reaching 180 degrees again

Note: Phase behavior versus offset is more complicated for CSEM data.

What does typical CSEM data look like?

CSEM data is acquired in the time-domain and transformed into the frequency-domain

In the frequency domain, each data point is a complex number consisting of a magnitude and a phase.

Data from a given receiver is presented as MvO and PvO curves displaying $\quad\left|E_{x}\right|(x), \quad \varphi(x)$

MvO and PvO curves are obtained for each frequency and each electric and magnetic field component.

Horizontal Distance

Air	Water
Sediments	
Resistor	
年	

Horizontal Distance

Phase with atan2(Z)

Phase with atan2(Z)
Phase of a complex number $Z: \quad \operatorname{tg}(\varphi)=\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}$

$$
Z=A e^{i \varphi}=A e^{i \varphi} e^{ \pm i n 2 \pi}=A e^{i(\varphi \pm 2 \pi n)}
$$

PHASE

PHASE

$e^{i \varphi}$ (

Preprocessing

Typical CSEM Workflow

Physical electromagnetic fields

Receiver configured in right-handed coordinate system.

Arbitrary x^{\prime} direction on seabed due to free fall.

Physical field $E_{\chi^{\prime}}\left(\boldsymbol{x}_{r}, t\right)$ measured as voltage over $\mathrm{A}-\mathrm{B}$ electrode pair

On seabed:

Automatic gain control

Large dynamic range of EM data but 24-Bit ADC -> AGC.
Avoid saturation at short offset.

Spikes

Spikes can for example be observed when writing data to flash

Data is stored in RAM and written to Flash every 20 min.

On seabed:

The recorded field on flash is uncalibrated

$$
\hat{E}_{x^{\prime}}\left(\boldsymbol{x}_{r}, n \Delta t\right)=E_{x^{\prime}}\left(\boldsymbol{x}_{r}, t\right) * G(t, \Delta t)
$$

The transfer function $G(t, \Delta t)$ is known. The influence can be described as a convolution. In general:

$$
E(t) * G(t)=\int d \tau E(t-\tau) G(\tau)
$$

By definition of Fourier transform:

$$
\int d t E(t) * G(t) e^{i \omega t}=E(\omega) G(\omega)
$$

Assume $G(t)$ known, then $G(\omega)$ known:

Onboard download and Fourier transform:

$$
\text { Flash: } \hat{E}_{x^{\prime}}\left(\boldsymbol{x}_{r}, n \Delta t\right) \longrightarrow \text { Computer: } \hat{E}_{x^{\prime}}\left(\boldsymbol{x}_{r}, n \Delta t\right) \longrightarrow \hat{E}_{x^{\prime}}\left(\boldsymbol{x}_{r}, \omega\right)
$$

Onboard calibration:

$$
\hat{E}_{x^{\prime}}\left(\boldsymbol{x}_{r}, \omega\right) \longrightarrow E_{x^{\prime}}\left(\boldsymbol{x}_{r}, \omega\right)=\hat{G}^{-1}(\omega, \Delta t) \hat{E}_{x^{\prime}}\left(\boldsymbol{x}_{r}, \omega\right)
$$

The data is now calibarated, electric fields are in units $[\mathrm{V} / \mathrm{m}]$ and magnetic fields are in $[\mathrm{A} / \mathrm{m}]$

The direction of the receiver x-axis is unknown at this stage.

Calibration

- Compensation for the sensor frequency responses
- Coil cross-coupling correction
- Compensation for the frequency response of each sensor channel (amplifier \& ADC)
- Time drift correction
- Despiking

Calibration

- Compensation for the sensor frequency responses
- Coil cross-coupling correction
- Compensation for the frequency response of each sensor channel (amplifier \& ADC)
- Time drift correction
- Despiking

Calibration

- Compensation for the sensor frequency responses
- Coil cross-coupling correction
- Compensation for the frequency response of each sensor channel (amplifier \& ADC)
- Time drift correction
- Despiking

Calibration

- Compensation for the sensor frequency responses
- Coil cross-coupling correction
- Compensation for the frequency response of each sensor channel (amplifier \& ADC)
- Time drift correction
- Despiking

Calibration

- Compensation for the sensor frequency responses
- Coil cross-coupling correction
- Compensation for the frequency response of each sensor channel (amplifier \& ADC)
- Time drift correction (difference between receiver clock and actual time)
- Despiking

time drift correction

```
Since time is the variable that is
used to link the data from the
different acquisition units, viz.
    - source navigation data
    - source current data
    - receiver data
it is important for time drift
correction to be as accurate as
possible
Time stamps are in Unix time.
```

Unix (POSIX) time: Elapsed time in seconds since Unix epoch.
Unix epoch: 00:00:00 UTC, January 1, 1970

Calibration

- Compensation for the sensor frequency responses
- Coil cross-coupling correction
- Compensation for the frequency response of each sensor channel (amplifier \& ADC)
- Time drift correction
- Despiking

Data

Data

Data

Data

Data

Data

Source position corresponds to time T.

Data

Source position corresponds to time T.
Perform following transform for desired set of source receiver coordinates:

$$
\tilde{E}_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\frac{1}{\tau} \int_{T-\frac{\tau}{2}}^{T+\frac{\tau}{2}} d t W(t-T) E_{x}\left(\boldsymbol{x}_{r}, t \mid \boldsymbol{x}_{s}\right) e^{i \omega t}
$$

Have

$$
\tilde{E}_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\frac{1}{\tau} \int_{T-\frac{\tau}{2}}^{T+\frac{\tau}{2}} d t W(t-T) E_{x}\left(\boldsymbol{x}_{r}, t \mid \boldsymbol{x}_{s}\right) e^{i \omega^{+}+}
$$

Phase of \widetilde{E}_{x} dependes on time T (Unix time)
Thus arbtrary!

$$
\begin{aligned}
& \tilde{E}_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} d t W\left(t^{\prime}\right) E_{x}\left(\boldsymbol{x}_{r}, t^{\prime}+T \mid \boldsymbol{x}_{s}\right) e^{i \omega\left(t^{\prime}+T\right)} \\
& \tilde{E}_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\frac{e^{i \omega T}}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} d t W\left(t^{\prime}\right) E_{x}\left(\boldsymbol{x}_{r}, t^{\prime}+T \mid \boldsymbol{x}_{s}\right) e^{i \omega t^{\prime}}
\end{aligned}
$$

Have

$$
\tilde{E}_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\frac{e^{i \omega T}}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} d t W\left(t^{\prime}\right) E_{x}\left(\boldsymbol{x}_{r}, t^{\prime}+T \mid \boldsymbol{x}_{s}\right) e^{i \omega t \prime}
$$

Correct for effect of W

$$
E_{x}^{\prime}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=e^{i \omega T} A\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right) e^{i \varphi_{R}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{S}\right)}
$$

Source is transformed over same time interval

$$
\begin{aligned}
& J_{x}\left(\boldsymbol{x}_{S}, \omega\right)=\frac{1}{\tau} \int_{T-\frac{\tau}{2}}^{T+\frac{\tau}{2}} d t J_{x}\left(\boldsymbol{x}_{s}, t\right) e^{i \omega t} \\
& J_{x}\left(\boldsymbol{x}_{s}, \omega\right)=\frac{e^{i \omega T}}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} d t J_{x}\left(\boldsymbol{x}_{S}, t^{\prime}+T\right) e^{i \omega t} \\
& J_{x}\left(\boldsymbol{x}_{s}, \omega\right)=e^{i \omega T} B\left(\boldsymbol{x}_{s}, \omega\right) e^{i \varphi_{S}\left(\boldsymbol{x}_{s}, \omega\right)}
\end{aligned}
$$

Have

$$
\begin{aligned}
& E_{x}^{\prime}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=e^{i \omega T} A\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right) e^{i \varphi_{R}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)} \\
& J_{x}\left(\boldsymbol{x}_{s}, \omega\right)=e^{i \omega T} B\left(\boldsymbol{x}_{s}, \omega\right) e^{i \varphi_{S}\left(\boldsymbol{x}_{s}, \omega\right)}
\end{aligned}
$$

Give

$$
E_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\frac{e^{i \omega T} A\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right) e^{i \varphi_{R}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)}}{e^{i \omega T} e^{i \varphi_{S}\left(\boldsymbol{x}_{s}, \omega\right)}}
$$

or

$$
E_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=A\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right) e^{i\left(\varphi_{R}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)-\varphi_{S}\left(\boldsymbol{x}_{s}, \omega\right)\right)}=\mathrm{A}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{S}\right) e^{i \varphi\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)}
$$

If phase approximately equals angular frequency times traveltime ($\varphi=\omega \tau$) then phase difference is a measure of propagation time from source to receiver.

Final results are corrected for influence of weight function

Demodulation

- The receiver time series can be transformed from the time-domain into the frequency-domain via a discrete-time short time Fourier transform (STFT)

Demodulation

- The receiver time series can be transformed from the time-domain into the frequency-domain via a discrete-time short time Fourier transform (STFT)
- We are interested in the frequencies from the source spectrum

Receiver time sequence (discrete)

Source signal

Demodulation

- The receiver time series can be transformed from the time-domain into the frequency-domain via a discrete time short time Fourier transform (STFT)
- Discrete Fourier Transform (DFT) with a "sliding window"

Noise estimation

- Noise estimation can be performed using frequencies that are close to the frequency of interest
- The noise estimate can be used to compute inversion weights

- The noise estimate can be used for spike detection

The procedure is repeated at each frequency of interest and each offset

Source dipole moment scaling

$$
E_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\mathrm{A}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right) e^{i \varphi\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)} \quad E_{x}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)=\frac{\mathrm{A}\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right) e^{i \varphi\left(\boldsymbol{x}_{r}, \omega \mid \boldsymbol{x}_{s}\right)}}{L J(\omega)}
$$

Electric magnitude [V/m]
at $f_{b}=1.0 \mathrm{~Hz}$

After scaling

Electric magnitude [V/(Am²)]
at $f_{b}=1.0 \mathrm{~Hz}$

CSEM receiver orientation

- How do we determine the CSEM receiver orientation relative to north or relative to towline?

CSEM receiver orientation

Method	Advantages	Disadvantages
compass	standard	- cost - battery requirements calibration
gyroscope or acoustic	accuracy	- sensitive to local geology - source needs to be towed over every receiver
inline rotation		sensitive to local geology
broadside rotation	takes geology into account	local geology may not be 1D
1D inversion	takes source orientation and	one needs to run a 3D inversion
3D inversion	tocal geology into account	

EM dipole source radiation: electric field

EM dipole source radiation: electric field

1D inversion (standalone)
3D inversion (integrated)

EM dipole source radiation: electric field

CSEM receiver orientation w.r.t. towline

The source heading relative to north is known from navigation.
The task therefore reduces to estimating the unknown receiver orientation relative to the known source dipole axis.

CSEM receiver orientation w.r.t. Dipole

[^0]Local geology (e.g. shallow resistors, bathymetry) perturbs the polarization of electric and magnetic fields

New generation of CSEM receivers will measure orientation by Independent method

rotation of field components

- Once the estimate for the CSEM receiver orientation w.r.t. the dipole has been obtained, we rotate to x-axis pointing in towline direction

$$
\left(\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
E_{x^{\prime}} \\
E_{y^{\prime}} \\
E_{z^{\prime}}
\end{array}\right) \quad\left(\begin{array}{c}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
H_{x^{\prime}} \\
H_{y^{\prime}} \\
H_{z^{\prime}}
\end{array}\right)
$$

- Alternative, rotate to x-axis pointing north
- The rotated fields $E_{x}, E_{y}, E_{z}, H_{z}, H_{y}, H_{z}$ are used further in the workflow

CSEM data processing: overview

ше emgs

SPOT THE DIFFERENCE

Thank you

[^0]: 1D inversion: Predict data for 3 layer model.
 Dipole direction and source and receiver positions are known.
 Minimize difference between observed and predicted electric and magnetic
 data
 Only unknown is φ.

