Ultrasonic Studies of Stressed **Sand** and Clay

Mohammad Hossain Bhuiyan & Rune M Holt

NTNU & SINTEF, Trondheim, Norway

Motivation

- Explore the effect of fluid substitution on anisotropic parameters
- Explore the behavior of v_p/v_s for sand and clay

Impact of fluid substitution on Anisotropy?

(Collett & Gurevich, 2013; Thomsen, 2012)

$$\varepsilon^{\text{sat}} = \frac{L}{L^{\text{sat}}} \varepsilon + \frac{\alpha_0}{L^{\text{sat}}} \frac{((\delta - 4\varepsilon)L + 4\gamma\mu)M}{3K_g}.$$

In a similar way, δ^{sat} is given by
$$\delta^{\text{sat}} = \frac{L}{L^{\text{sat}}} \delta + \frac{\alpha_0}{L^{\text{sat}}} \frac{((\delta - 4\varepsilon)L + 4\gamma\mu)M}{3K_g}.$$

How well known v_p/v_s trends does not works for uncosolidated sediments?

Effect of fluid on anisotropic parameters

Lab tests in triaxial set-up (only unsorted Ottawa sand)

() SINTEF

Effect of fluid on Epsilon (Uniaxial strain condition)

Det skapende universitet

Effect of fluid on Epsilon (Uniaxial strain condition)

Effect of fluid on Epsilon (Uniaxial strain Condition)

Effect of fluid on Epsilon (Uniaxial strain Condition)

Det skapende universitet

Det skapende universitet

Effect of fluid on Gamma (Uniaxial strain condition)

Effect of fluid on Gamma (Uniaxial strain condition)

Det skapende universitet

Effect of fluid on Gamma (Hydrostatic stress)

Effect of fluid on Gamma (Hydrostatic stress)

Net vertical stress (MPa)

Effect of fluid on Delta (Uniaxial strain condition)

Effect of fluid on Delta (Uniaxial strain condition)

Effect of fluid on Delta (Uniaxial strain condition)

Effect of fluid on Eta (Uniaxial strain condition)

Effect of fluid on Eta (Uniaxial strain condition)

Effect of fluid on Eta (Uniaxial strain condition)

Det skapende universitet

Vp-Vs (sand-clay)

Lab tests in Oedometer

Time (minutes)

Vp/Vs: Role of fluid (only sand data)

Vp/Vs: Role of fluid (only sand data)

Det skapende universitet

Vp/Vs: The role of clay content and stress

Net vertical stress (MPa)

v_P/v_s decreases with stress, more in clay than in sand

Vp/Vs trends

Oedometer tests performed with brine-saturated sand, clay (kaolinite) and sand:clay mixtures have been used to address $v_P vs$.

trends (here only axial velocities)

v_P/v_s: trends for sand

Higher velocities for Ottawa than for angular Columbia sand, but similar $v_P - v_S$ trends Plotting $v_P v_S v_S$ gives a better picture than showing v_P / v_S alone

No obvious effect of grain size

SINTEF

$v_{\rm P}/v_{\rm s}$: global trends for sand

stress (< 10 MPa) and above Data from Zimmer, 2003 (Diamond);

Domenico, 1977 (circular), Prasad, 1988 (square); Mondol et al., 2010 (triangle) and Yin, 1992 (star)

v_P/v_s: trends for clays

The trends are different from sand + again for data at low stress (< 10 MPa) vs. above

> Diamonds: This study Squares: Mondol et al. (2009) Circles: Yin (1992) (hydrostatic data)

> > Det skapende universitet

Vp/Vs: Role of state of consolidation and

Net vertical stress (MPa)

Net vertical stress (MPa)

SINTEF

Conclusions

- Comparison between measured dry and saturated anisotropy parameters are conformable with theory within experimental uncertainty
- v_P/v_s relation is sensitive to fluid saturation, stress, lithologies and state of consolidation.
- Well known v_p/v_s trends fail to explain v_p/v_s relation for uncosolidated sandy lithologies but fairly capture for clayey lithologies.

Acknowledgements

ROSE Program at NTNU for financial support Jørn Stenebråten & others in the Formation Physics Laboratory at SINTEF & NTNU

