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Stress dependence of seismic velocities

 Depletion / Inflation of reservoir reults in stress changes in and around the
reservoir, resulting in seismic-velocity and impedance changes.
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Stress dependence of seismic velocities

[ Timelapse seismic data can be inverted for stress and strain changes in the
subsurface (— caprock integrity) and reservoir compaction (— detection
of undepleted pockets), provided that accurate goemechanical and rock
physics models are available.
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» Geomechanical model: links pore-
pressure changes to stress and strain
changes. Critical input parameters:
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» Rock physics model: links stress and o |
strain changes to seismic velocity
changes (rocks are non-linear elastic e pseloni b
media') Hatchell & Bourne, 2005
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Stress dependence of seismic velocities

Issues:

U How to obtain rock stiffnesses?

> Reservoir rocks: Core material might be
available

» Overburden rocks (often shale): stiffnesses
obtained from seismic or sonic data using
correlations. How good are those
correlations?

1 How to obtain the stress and stress-path
dependence of seismic velocities

» Rock physics models often based on laboratory
measurements at ultrasonic frequencies;
dispersion effects are usually ignored

» Recent tests with different types of shales show
large seismic dispersion & Better
understanding of dispersion effects needed
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New compaction cell for seismic-dispersion
measuremen

Compaction tests

Endcap with

ultrasonic 1§
transducers (Vp, Vs) p
~._and [Io_ore—ﬂuid line b
N LVD .
Rock sample (1" 1
diameter) with 8
strain gages (4 axial,

4 radial) glued to it
(rubber sleeve was

O Control of confining
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O Ultrasonic
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Poissons's ratio) at (Vp, Vs) and pore-fluid
seismic frequencies line
(1-155 Hz) ) Low-frequency 4
unit consisting of | |
= piezoelectric
actuator and g
— piezoelectric
< . force sensor |

—rnternal 10ad cell

NTNLU = Trondheim
> SI NTEF ‘ B Norwegian University of
Science and Technology



Pierre shale: Stress dependence of

%elocdtigfh: Constant mean stress loading /
unloading + triaxial unloading/loading
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Change in deviatoric stress at constant mean stress corresponds to the
stress path in the overburden and sideburden of a depleting / inflating
reservoir for a homogeneous subsurface
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Pierre shale: Stress dependence of
YRlAfA8Sy results
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» Zero-strain static Young's modulus consistent with low-frequency
measurements

» Seismic Young's modulus increases with increasing deviatoric
stress

> Stress effects not fully reversible (due to plastic deformation, or
experimental artefact?)
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Pierre shale: Stress dependence of
vRI8CItISH limit of static Young's modulus

tic Young's modulus has elastic and non-elastic component
ing triaxial unloading, the non-elastic component vanishes in the limit of zero st
umption (proven for sandstones)*: de_,/do,, increases linearly with Ac_,

* Fjeer, Stroisz, Holt, ARMA 12-537 8
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Mancos shale: Stress dependence of

‘tprlrggelgﬁﬁle orientations (allowing for the determination of all 5
iIndependent stiffness-matrix components: C;;, C;;, C,,, C,(, C3)
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U Stress states:

1. P =5 Mpa, 6., = 7 MPa Comment: A constant deviatoric stress of 2 MPa was applied in
conf Loax axial direction in order to improve the signal quality of the low-

2. P, =10 Mpa, o, = 12 IVII:)afrequency data; the impact of this deviatoric stress on the rock

3.P = 15 Mpa, o, = 17 M Pastiffness was ignored in the anisotropy analysis, which is justified
conf boax since the angular dependence of the velocities is much larger

4. P = 20 Mpa, o,, = 22 MPathan the stress effect.
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Mancos shale: Stress dependence of
veollplcit;es

1lts ow-Trequency measurements
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Mancos shale: Stress dependence of

velfccit;es
llts of low-frequency measurements
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Mancos shale: Stress dependence of

vglocjties
s of low-frequency measurements - Youngs-modulus
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Mancos shale: Stress dependence of
0yelo&mes

low-frequency measurements - Poisson's ratio (average)
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Mancos shale: Stress dependence of
Yesldieie] egmbined low-frequency and ultrasonic

measurements - Dispersion Stiffness matrix
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Mancos shale: Stress dependence of

Yesldieie] egmbined low-frequency and ultrasonic
measurements - Young's moduli, E,, E,
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Mancos shale: Stress dependence of

Yesldieie] egmbined low-frequency and ultrasonic
measurements -
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> Larger stress dependence of v, and v at seismic frequencies

> V¢ at ultrasonic frequencies exhibits neglible change with
stress, while v, at seismic frequencies increases gradually with
stress

» Preliminary results only! Anisotropy data needs to be checked
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Summary
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Shales, both fully saturated (Pierre) and partially
saturated (Mancos), exhibit significant seismic
dispersion

Dispersion mechanism in shales not yet understood

Seismic dispersion in shales is strongly affected by
stress

Stress dependence of v, and v, is not the same at

seismic and ultrasonic frequencies & Rock physics
models based on ultrasonic data may not apply

Shale anisotropy has to be taken into account

More experimental studies and improved rock-

physics models needed
NTNL = Trondheim
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