ROSE Seminar, Trondheim, 27-28 April 2015

Bounds on Anisotropic Moduli

Constraints on C₁₃ and their Consequences

by Rune M. Holt

This is a summary of the presentation topic, not containing details. The details will be found in an upcoming

Focus:

- VTI symmetry
- Shales

publication.

Isotropic Bounds on Elastic Moduli

Bulk modulus K
Shearmodulus G
Young's modulus E
Plane Wave Modulus H

3 0

Poisson's ratio n

$$-1 £ n £ \frac{1}{2}$$

?

Theoretical Basis: Positive Elastic Energy

Anisotropy

VTI (Vertical Transverse Isotropy):

Theoretical Basis: Positive Elastic Energy;
 Stiffness & Compliance Matrices Positive Definite

Anisotropic Wave velocities:

$$r v_{PH}^{2} = C_{11}; \quad r v_{PV}^{2} = C_{33}; \quad r v_{SV}^{2} = C_{44}, \quad r v_{SH}^{2} = C_{66}$$

$$e = \frac{C_{11} - C_{33}}{2C_{33}}; \quad g = \frac{C_{66} - C_{44}}{2C_{44}}$$

$$r v_{qP}^{2}(q) = f(C_{11}, C_{33}, C_{44} \& C_{13})$$

$$d = \frac{(C_{13} + C_{44})^{2} - (C_{33} - C_{44})^{2}}{2C_{33}(C_{33} - C_{44})}$$

$$e = \frac{C_{11} - C_{33}}{2C_{33}}; g = \frac{C_{66} - C_{44}}{2C_{44}}$$
$$d = \frac{(C_{13} + C_{44})^2 - (C_{33} - C_{44})^2}{2C_{33}(C_{33} - C_{44})}$$

U Anisotropic E-moduli & Poisson's ratios:

$$E_{V} = C_{33} - \frac{C_{13}^{2}}{(C_{11} - C_{66})} = \frac{(C_{11} - C_{66})C_{33} - C_{13}^{2}}{(C_{11} - C_{66})}; \quad n_{VH} = \frac{C_{13}}{2(C_{11} - C_{66})}$$

$$E_{H} = \frac{4C_{66}[(C_{11} - C_{66})C_{33} - C_{13}^{2}]}{C_{11}C_{33} - C_{13}^{2}}; \quad n_{HV} = \frac{2C_{66}C_{13}}{C_{11}C_{33} - C_{13}^{2}}; \quad n_{HH} = \frac{(C_{11} - 2C_{66})C_{33} - C_{13}^{2}}{C_{11}C_{33} - C_{13}^{2}}$$

Angular dependence of Young's modulus (core axis at angle q with z):

$$\frac{1}{E(q)} = \frac{\cos^4 q}{E_z} + \frac{\sin^4 q}{E_r} + \frac{\sin^2 q \cos^2 q}{B}; \quad \frac{1}{B} = \frac{1}{C_{44}} - \frac{C_{13}}{(C_{11} - C_{66})C_{33} - C_{13}^2}$$

Linking static and dynamic parameters

- In the LAB:
- Dynamic (ultrasonic) measurements:
 - We can easily obtain C₃₃ & C₄₄ + C₁₁ & C₆₆ from one core plug
 - C₁₃: Yes, but with more uncertainty

- Static (or quasistatic) measurements:
 - We can obtain C_{33} , C_{13} & C_{66} from one core plug (at least 2 stress paths required!)
 - C₁₁ from a second core plug drilled at 90 °
 - C₄₄ from a third core plug drilled at oblique angle

Bounds may help to provide a best estimate of "uncertain" parameters + QC of measured data

Anisotropic Bounds for VTI Media

Theoretical Basis: Positive Elastic Energy;
 Stiffness & Compliance Matrices Positive Definite

$$C_{44} > 0;$$
 $C_{66} > 0$
 $C_{11} > C_{66} > 0;$ $C_{33} > 0$
 $(C_{11} - C_{66})C_{33} - C_{13}^{2} > 0$

Note: No requirement that $C_{33} > C_{66}$

- Fundamentally; bounds may in general not always be found.
- Here we assume that C₁₁ & C₆₆ are known (C₃₃ & C₄₄ may be found if P- and S-wave anisotropies also are known):
- Question: What bounds do then exist for Poisson's ratios, Young's modulus anisotropy, and Thomsen's d?

Conclusions

- Anisotropic elastic mofuli are bounded by the requirement of positive elastic energy
 - Rigid bounds do not always exist
- Constraints on C₁₃ lead to bounds on Poisson's ratios, E-modulus anisotropy and Thomsen's d.
 - "n" > 0.5 is accepted and expected
 - Do not use "n" from v_P/v_S in anisotropic media
 - d < 0 is expected, in particular for soft shales
- Laboratory observations show no values outside bounds
 - Trends within bounds may reveal fundamental insight

Acknowledgements

- ROSE Program @ NTNU
- Shale Rock Physics JIP @ SINTEF
 - Both projects are financed by The Research Council of Norway + several oil / service companies
- Colleagues for valuable discussions
- Colin Sayers for motivating the study

