Exact boundary conditions for free-surface related multiple prediction

Marlies Vasmel, Johan O.A. Robertsson, and Lasse Amundsen

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ROSE meeting, May 2014

Free-surface related multiples

In marine seismic experiments

- Sea surface reflects all upgoing energy
- Imaging and processing techniques require primaries only
- Successful multiple elimination is critical

Outline

- Introduction
- Exact boundary conditions (EBCs)
- Data pre-processing
- Numerical results
- Discussion and conclusions

Main strategies

Predict multiples and adaptively subtract from recorded data

e.g., SRME (Dragoset et al., 2010)

 Transform data to new desired data from a hypothetical experiment without sea surface

• e.g., MDD (Amundsen, 2001; Wapenaar et al., 2011)

Main strategies

- Predict multiples and adaptively subtract from recorded data
 - e.g., SRME (Dragoset et al., 2010)
- Transform data to new desired data from a hypothetical experiment without sea surface

• e.g., MDD (Amundsen, 2001; Wapenaar et al., 2011)

- Predicting all orders of multiples at once
- Relies on multicomponent seismic data
- Requires no subsurface knowledge
- Using conventional time-domain forward modeling
- Adaptive subtraction of predicted multiples

Concept

Actual experiment

Concept

Actual experiment

Desired model for multiple prediction

Concept

Actual experiment

Desired model for multiple prediction

Model for multiple prediction using EBCs

Enable **local** wavefield computation on a truncated domain (van Manen et al., 2007)

- Two domains dynamically linked
- All interactions correctly modeled

Full domain

$$p^{trunc}(oldsymbol{x}') = \ \int_{V} s(oldsymbol{x}) * G^{p,q}(oldsymbol{x}',oldsymbol{x}) d^{3}oldsymbol{x}$$

$$p^{full}(\boldsymbol{x}') = \int_{V} s(\boldsymbol{x}) * G^{p,q}(\boldsymbol{x}', \boldsymbol{x}) d^{3}\boldsymbol{x} + \int_{S} [G_{i}^{p,f}(\boldsymbol{x}', \boldsymbol{x}) * p^{full}(\boldsymbol{x})] n_{i} d^{2}\boldsymbol{x}$$

Full domain

$$p^{trunc}(\boldsymbol{x}') = \int_{V} s(\boldsymbol{x}) * G^{p,q}(\boldsymbol{x}', \boldsymbol{x}) d^{3}\boldsymbol{x}$$
$$d^{2}\boldsymbol{x} + \int_{S} [G_{i}^{p,f}(\boldsymbol{x}', \boldsymbol{x}) * p^{full}(\boldsymbol{x})] n_{i} d^{2}\boldsymbol{x}$$

$$p^{full}(\boldsymbol{x}') = \int_{V} s(\boldsymbol{x}) * G^{p,q}(\boldsymbol{x}', \boldsymbol{x}) d^{3}\boldsymbol{x} + \int_{S} [G_{i}^{p,f}(\boldsymbol{x}', \boldsymbol{x}) * p^{full}(\boldsymbol{x})] n_{i} d^{2}\boldsymbol{x}$$

Recorded multicomponent data to predict $p^{full}(\boldsymbol{x},t)$ on boundary:

$$p^{full}(\boldsymbol{x},t) = \int_{0}^{t} \int_{S'} [G_{i}^{p,f}(\boldsymbol{x}, \boldsymbol{x}', t - t') p^{full}(\boldsymbol{x}', t') + G^{p,q}(\boldsymbol{x}, \boldsymbol{x}', t - t') v_{i}^{full}(\boldsymbol{x}', t')] n_{i} d^{2} \boldsymbol{x}' dt'$$

Recursive time-discrete version (van Manen et al., 2007):

- Contributions to extrapolation integral evaluated at each timestep
- Recorded data predict interaction with unknown subsurface: $G^{p,q}(x,x')$ and $G^{p,f}_i(x,x')$

Multicomponent data: finite-difference injection to prepare data (Robertsson and Chapman, 2000; Amundsen and Robertsson, 2014)

- Redatumning and reciprocity
 - $G^{p,q}(\boldsymbol{x}^r, \boldsymbol{x}) \to G^{p,q}(\boldsymbol{x}, \boldsymbol{x}')$

$$G_i^{v,q}(\boldsymbol{x}^r, \boldsymbol{x}) \to G_i^{p,f}(\boldsymbol{x}, \boldsymbol{x}')$$

Remove source signature

Modeling engine for multiple prediction

- Inject sea surface reflections
- Model interaction with unknown subsurface

Modeling engine for multiple prediction

- Inject sea surface reflections
- Model interaction with unknown subsurface
- Predicts all orders of of free-surface related multiples

Numerical results

Demonstration of the method

- Acoustic FDTD modeling
- Record multicomponent data
- FD injection for redatumning and source signature removal
- Inject into modeling engine with EBCs

Numerical results

Numerical results

Discussion of results

- Exact implementation for densely sampled data at all offsets
- Resemblance with SRME, but essential differences:
 - Predict all orders of multiples at once
 - Exploit benefits of multicomponent data
 - Source signature removal through FD injection
 - Receiver ghosts naturally accounted for
- Similar interpolation requirements for field data

Conclusions

- Method to predict all orders of multiples in marine multicomponent data
- Problem solved in time-domain by applying EBCs to conventional FD propagator
- Avoid issues related to inverse problems

- Amundsen, L. [2001] Elimination of free-surface related multiples without need of the source wavelet. *Geophysics*, 66(1), 327–341.
 Amundsen, L. and Robertsson, J.O.A. [2014] Prediction of wavefield constituents by modeling, part i: Wave equation processing and imaging of marine multicomponent data beyond traditional RTM. *Geophysics*, submitted.
- Dragoset, B., Verschuur, E., Moore, I. and Bisley, R. [2010] A perspective on 3D surface-related multiple elimination. *Geophysics*, **75**(5), A245–A260.
- Robertsson, J.O.A. and Chapman, C.H. [2000] An efficient method for calculating finite difference seismograms after model alterations. *Geophysics*, **65**(3), 907–918.
- van Manen, D.J., Robertsson, J.O.A. and Curtis, A. [2007] Exact wave field simulation for finite-volume scattering problems. *Journal of the Acoustical Society of America*, **122**(4), EL115–EL121.
- Wapenaar, K. et al. [2011] Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison. *Geophysical Journal International*, **185**(3), 1335–1364.

Acknowledgments

- Statoil
- SNF grant 2-77532-12

Exact boundary conditions for free-surface related multiple prediction

Thank you

Back up slides

Time discrete wavefield extrapolation

$$p^{full}(\boldsymbol{x}, l, n) = p^{full}(\boldsymbol{x}, l, n-1) + \int_{S} [G_{i}^{p,f}(\boldsymbol{x}, \boldsymbol{x}', l-n)p^{full}(\boldsymbol{x}', n) + G^{p,q}(\boldsymbol{x}, \boldsymbol{x}', l-n)v_{i}^{full}(\boldsymbol{x}', n)]n_{i}d^{2}\boldsymbol{x}'$$

(Loading local wavefield recomputation movie..)