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Free-surface related multiples

In marine seismic experiments
® Sea surface reflects all upgoing energy

® Imaging and processing techniques require primaries only
= Successful multiple elimination is critical
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Data-driven multiple elimination

Main strategies
® Predict multiples and adaptively subtract from recorded data
- e.g., SRME (Dragoset et al., 2010)

= Transform data to new desired data from a hypothetical
experiment without sea surface

¢« e.g., MDD (Amundsen, 2001; Wapenaar et al., 2011)
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New method

Predicting all orders of multiples at once

Relies on multicomponent seismic data
= Requires no subsurface knowledge

= Using conventional time-domain forward modeling

Adaptive subtraction of predicted multiples
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Exact boundary conditions

Enable local wavefield computation on a truncated domain (van
Manen et al., 2007)

® Two domains dynamically linked
= All interactions correctly modeled
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Exact boundary conditions
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Exact boundary conditions

Recorded multicomponent data to predict p/"!!(x, ) on boundary:

t
Vil = | [ 16 @ = )
+GP(x, 2t — t’)vifu”(ac’, ) nid>a’ dt’

Recursive time-discrete version (van Manen et al., 2007):
= Contributions to extrapolation integral evaluated at each timestep

= Recorded data predict interaction with unknown subsurface:
GPi(x,x') and GP (x, @)



Data pre-processing

Multicomponent data: finite-difference injection to prepare data
(Robertsson and Chapman, 2000; Amundsen and Robertsson, 2014)

® Redatumning and reciprocity
o GP(x",x) > GP(x,x’)
-G, x) — G (2

= Remove source signature




Modeling engine for multiple prediction
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Modeling engine for multiple prediction

= Inject sea surface reflections

® Model interaction with unknown

subsurface

= Predicts all orders of of free-surface

related multiples
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Numerical results

Velocity model (m/s)

Demonstration of the method 0
® Acoustic FDTD modeling

® Record multicomponent data
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Numerical results

Recorded shotgather Predicted multiples




Numerical results

Difference with
Shotgather after multiple removal reference solution (x 10! 2)




Discussion of results

= Exact implementation for densely sampled data at all offsets
= Resemblance with SRME, but essential differences:

= Predict all orders of multiples at once

o Exploit benefits of multicomponent data

o Source signature removal through FD injection

o Receiver ghosts naturally accounted for

= Similar interpolation requirements for field data




Conclusions

= Method to predict all orders of multiples in marine
multicomponent data

= Problem solved in time-domain by applying EBCs to conventional
FD propagator

= Avoid issues related to inverse problems
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Time discrete wavefield extrapolation

pf“ll(a:, l,n) = pf“ll(a:,l,n -1)
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EBCs in numerical modeling
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EBCs in numerical modeling

(Loading local wavefield recomputation movie..)
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