

Comparison

Conclusions

Multi-offset experiment

Introduction

Comparison of numerical seismic modeling results with acoustic water-tank data: multi-offset experiment

A. Tantsereva, B. Ursin, N. Favretto-Cristini, P. Cristini, D. Komatitsch and A.M. Aizenberg

> 05. may 2014 ROSE meeting

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	C	Dutline		
1 Intro	oduction			
				`~.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Comparison
- **G** Conclusions

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	(Dutline		
1 Intro	duction			```
2 Multi	-offset experiment			

▲ロト▲舂▶▲目▶▲目▶ 目 のへで

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	C	Outline		
1 Intro	oduction			```
2 Mult	i-offset experiment			
3 Tip-	Wave Superposition M	lethod		

▲ロト▲圖ト▲目ト▲目ト 目 のへの

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	C	Dutline		
1 Intro	oduction			```
2 Mult	ti-offset experiment			
3 Tip-	Wave Superposition M	lethod		``

▲□▶▲□▶▲□▶▲□▶ = つへぐ

Comparison

Conclusions

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	C	Dutline		
1 Intro	oduction			```
	ti-offset experiment			,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

3 Tip-Wave Superposition Method

4 Comparison

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions

Motivation

- 3D seismic modeling is an important tool nowadays
- Difficulties in simulating 3D wave propagation due to the presence of shadow zones, head waves, diffractions and edge effects
- How to check the validity of the results?

イロト 不得 とくほ とくほとう

Benchmarking of numerical modeling methods

Against analytical solutions for simple canonical problems.

- Against other numerical modeling methods (e.g. SEAM project).
- Via direct comparison with real data acquired in situ.
- With data obtained in the laboratory under controlled conditions (small-scaled modeling)

・ロト ・ 行下・ ・ 日 ・ ・ 日 ・

Benchmarking of numerical modeling methods

- Against analytical solutions for simple canonical problems.
- Against other numerical modeling methods (e.g. SEAM project).
- Via direct comparison with real data acquired in situ.
- With data obtained in the laboratory under controlled conditions (small-scaled modeling)

・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ ト

Benchmarking of numerical modeling methods

- Against analytical solutions for simple canonical problems.
- Against other numerical modeling methods (e.g. SEAM project).
- Via direct comparison with real data acquired in situ.
- With data obtained in the laboratory under controlled conditions (small-scaled modeling)

・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ ト

Benchmarking of numerical modeling methods

- Against analytical solutions for simple canonical problems.
- Against other numerical modeling methods (e.g. SEAM project).
- Via direct comparison with real data acquired in situ.
- With data obtained in the laboratory under controlled conditions (small-scaled modeling)

Seismic modeling vs. Ultrasonic laboratory experiment

Main assumption: scaled physical mechanisms are identical to field physical mechanisms (Ebrom and McDonald, 1994)

Scale ratio $\mu = 2 \cdot 10^4$

 Table : scale ratio between parameters at seismic scale and laboratory scale

Distance (m)	d_{seis}	=	μd_{lab}
Wavelength (<i>m</i>)	λ_{seis}	=	$\mu\lambda_{lab}$
Time (s)	t _{seis}	=	μt_{lab}
Frequency (Hz)	f_{seis}	=	$\mu^{-1} f_{lab}$
Velocity (m/s)	vseis	=	v_{lab}
Density (kg/m^3)	ρ_{seis}	=	ρ_{lab}
Quality factor (adim.)	Q_{seis}	=	Q_{lab}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The BENCHIE project

Main goal: reveal the strong points and limitations of numerical methods (accuracy and computational cost)

Methods in the project:

- Tip-Wave Superposition Method
- Spectral-Element Method
- Discontinuous Galerkin
- Born-Integral Method

Link

http://www.benchie.cnrs-mrs.fr

Synthetic data vs. Laboratory data

- Laboratory data for zero- and multi-offset experiments obtained in the Laboratoire de Mécanique et d'Acoustique in Marseille, France
- Numerical seismic modeling carried out using the Tip-wave Superposition Method (Ayzenberg et al., 2007 Geophysics 72)

Figure : Zero-offset acquisition

Figure : Multi-offset acquisition

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	C	Dutline		
1 Intro	oduction			
2 Mult	i-offset experiment			, , , , , , , , , , , , , , , , , , , ,
3 Tip-	Wave Superposition M	lethod		
(4) Com	parison			
5 Cond	clusions			

▲ロト▲舂▶▲目▶▲目▶ 目 のへで

Figure : Based on the French model (French, 1974)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Material properties

	V _p	Vs	ρ	Q _p	Qs
Water	1476-1493 m/s	-	1000 kg/m ³	-	-
PVC	2220 m/s	1050 m/s	1412 kg/m ³	40-60	27-31
Sand	1660-1675 m/s	50 m/s	2004 kg/m ³	120	-
Aluminum	6440 m/s	3170 m/s	2700 kg/m ³	-	-

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Zero-offset experimental set-up

ursurrerser e 990

ヘロト 人間 とくほ とくほとう

æ

Zero-offset acquisition

T .				
	rod	ner	10	•
	սսս	ucu	10	

Laboratory data, zero-offset

Multi-offset experimental set-up

▲□▶▲□▶▲∃▶▲∃▶ ∃ りへで

Multi-offset acquisition

Conclusions

Laboratory data, multi-offset

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	C	Dutline		
1 Intro	oduction			```
2 Mult	i-offset experiment			
3 Tip-	Wave Superposition M	lethod		×
4 Com	parison			
5 Conc	lusions			

イロト イ理ト イヨト イヨト э

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	Tip-Wave Sup	erposition	n Method	
			1	
The sur	face integral propagator	Р		
	$1 \int \int \partial G(\mathbf{x})$	(a.)	a 1	

$$\mathbf{P}(\mathbf{x};\mathbf{s})\langle\ldots\rangle = \frac{1}{4\pi} \iint_{\Sigma} \left[\frac{\partial G(\mathbf{x};\mathbf{s})}{\partial \mathbf{n}(\mathbf{s})} \langle\ldots\rangle - G(\mathbf{x};\mathbf{s}) \frac{\partial}{\partial \mathbf{n}(\mathbf{s})} \langle\ldots\rangle \right] d\Sigma(\mathbf{s})$$
(1)

The reflection and transmission operators ${\bf R}$ and ${\bf T}$

$$\mathbf{R}\left(\mathbf{s},\mathbf{s}'\right) = \mathfrak{F}^{-1}\left(\mathbf{s},\mathbf{q}\right)\hat{\mathbf{R}}(\mathbf{q})\mathfrak{F}\left(\mathbf{q},\mathbf{s}'\right)$$
(2)

and

$$\mathbf{T}\left(\mathbf{s},\mathbf{s}'\right) = \mathfrak{F}^{-1}\left(\mathbf{s},\mathbf{q}\right)\hat{\mathbf{T}}(\mathbf{q})\mathfrak{F}\left(\mathbf{q},\mathbf{s}'\right) \tag{3}$$

- Interface split into small elements, propagation operator approximated by propagation matrix.
- Reflection operator approximated by effective or plane-wave reflection/transmission coefficients.

Tip-Wave Superposition Method

- Plane-wave reflection coefficient (PWRC) => conventional Kirchhoff modeling
 - Fast and accurate
 - Artificial diffractions
- Effective reflection coefficients (ERC)
 - Slower, but high accuracy
 - Seismic frequency range
 - Head waves
- Effective coefficients on dominant frequency (DRC)

・ロト ・ 御 ト ・ 国 ト ・ 国 ト … 国

- Trade-off between speed and quality
- No artificial diffractions
- No head waves

イロト イ理ト イヨト イヨト

Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions
	(Dutline		
1 Intro	duction			```
2 Mult	i-offset experiment			
3 Tip-V	Wave Superposition M	lethod		```.
4 Com	parison			
5 Conc	lusions			

Multi-offset experiment, S1

Comparison of laboratory and synthetic data, S1

Multi-offset experiment

TWSM

Conclusions

Laboratory data, S1

Conclusions

Synthetic data, S1

Conclusions

Laboratory data, S2

Conclusions

Synthetic data, S2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Laboratory data, S3

E 996

Conclusions

Synthetic data, S3

- na (?

Conclusions							
Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions			

- Multi-offset seismic experiments using sources with unfocused beam and 2D array receivers covering the entire model.

Conclusions						
Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions		

Conclusions

- Multi-offset seismic experiments using sources with unfocusedbeam and 2D array receivers covering the entire model.
- Comparisons indicate a good qualitative fit in time arrivals and amplitudes.
- Synthetic modeling helps in interpretation of the obtained laboratory data.
- More detailed study of the experiment conditions needed to perform quantitative evaluation of the results.

イロト 不得 とうほう イヨン

Conclusions						
Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions		

Conclusions

- Multi-offset seismic experiments using sources with unfocused beam and 2D array receivers covering the entire model.
- Comparisons indicate a good qualitative fit in time arrivals and amplitudes.
- Synthetic modeling helps in interpretation of the obtained laboratory data.
- More detailed study of the experiment conditions needed to perform quantitative evaluation of the results.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Conclusions						
introduction	Muni-onset experiment	1 WSM	Comparison	Conclusions		
Introduction	Multi-offect experiment	TWSM	Comparison	Conclusions		

Conclusions

- Multi-offset seismic experiments using sources with unfocused beam and 2D array receivers covering the entire model.
- Comparisons indicate a good qualitative fit in time arrivals and amplitudes.
- Synthetic modeling helps in interpretation of the obtained laboratory data.
- More detailed study of the experiment conditions needed to perform quantitative evaluation of the results.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Acknowledgements							
Introduction	Multi-offset experiment	TWSM	Comparison	Conclusions			

- Stephan Devic (LMA Marseille) for his valuable contribution to the conception of the Marseille model
- For financial support

Innovation and Creativity